New materials for organic photodetectors, wavelength sifters and plastic scintillators

Sergey Ponomarenko, Oleg Borschev, Nikolay Surin

Institute of Synthetic Polymeric Materials of Russian Academy of Sciences (ISPM RAS), Moscow, Russia

Luminescent Innovation Technologies LLC, Skolkovo (Moscow region), Russia

- Introduction
- Materials for organic solar cells and photodetectors
- Organosilicon nanostructured luminophores (ONL)
- Plastic scintillators with ONL
- Organosilicon wavelength shifters (Si-WLS)

Functional materials for Organic Electronics and Photonics @ ISPM RAS

Oligo- and polyarylsilanes of different molecular structure

See review: S.A. Ponomarenko, S. Kirchmeyer, *Adv. Polym. Sci.*, 2011, 235, 33 - 110.

New materials for polymer BHJ solar cells and photodetectors

Organic Photovoltaic Cells

Bilayer device

Bulk-heterojunction device

Photoinduced Charge Generation

Donor-acceptor nanocomposite

Organic Photovoltaic Cells

Control:

- Absorption of the solar light
- Charge transport
- Solubility
- Morphology
- HOMO and LUMO energy levels of donor and acceptor

Bulk-heterojunction device

Typical electrical characteristics of photovoltaic cells

Power conversion efficiency
$$\eta = \frac{I_{max}V_{max}}{P_{light}} \times 100\% = \frac{I_{sc}V_{os}FF}{P_{light}} \times 100\%$$

8

Advantages of organic electronics

- Light weight
- Flexibility
- Large area
- Transparent
- Low-Cost

The production of plastic chips tomorrow

Continuous printing methods for low cost polymerelectronics • by roll to roll printing

"let's print electronics like a newspaper"

- No vacuum processing
- No lithography (printing)
- Low-cost substrates (plastic, paper, even cloth...)
- Direct integration on package (lower insertion costs)

Organic Semiconducting materials

Organosilicon derivatives of α , α '-dialkyloligothiophenes

UV- Vis absorption spectra

Thin films absorption spectra

Solar Energy Materials and Solar cells 2010, 94, 2064

Preparation of test devices for organic photovoltaic cells

Energy & Environmental Science 2010, 3, 1941

13

Tetrakis(ter-, quater- and quinquethiophene)silanes

Energy & Environmental Science 2010, 3, 1941

I-V characteristics and IPCE spectra of photovoltaic cells based on oligothiophenesilanes

Photodetectors based on Si(4T-Hex)₄ / [70]PCBM BHJ

Solar light spectra and absorption spectra of the mostly used materials

	Mn	Mw	DPI	λ _{max} , nm (solution)	λ _{max} , nm (film)	$\Delta E_{opt} eV,$ (solution)	ΔE _{opt,} eV (film)
P1	8400	11900	1.42	495	478	2.24	2.21
P2	2700	4500	1.67	474	434	2.25	2.19
P3	7500	12500	1.67	574	585	1.89	1.69
P 4	6700	10000	1.49	577	594	1.88	1.59

P8

4600

6000

1.30

481

494

2.16

1.88

20

Low band gap copolymers R R` R1 P7 (R = - Oct)P5 (R = - Oct)P3 (R = - Oct)P1 (R, $R_1 = - Oct$) P6(R = -EtHex)P8 (R = - EtHex)R R P4(R = -EtHex)P2 ($R = Oct, R_1 = -EtHex$) $\Delta E_{opt} eV$, V_{oc}, FF, No. I_{sc}, η, in film mA/cm² % % **Px / F1** мV 2.21 0.80 **P1** 1:1 1.43 522 53 2.19 1:22.94 561 32 0.20 **P2** P9 (R = - Oct)P10 ($\mathbf{R} = -\mathbf{EtHex}$) **P3** 1.69 1:2 1.45 27 0.14 365 1.59 1:2 3.10 565 41 0.70 **P4** 1.60 1:3 2.50 37 0.50 525 **P5** 1:3 1.62 **P6** 2.10 37 0.41 516 P11 (R = - Oct)1.79 1:3 2.57 39 0.73 720 **P7** P12 ($\mathbf{R} = -\mathbf{EtHex}$) 1.88 1:4 **P8** 1.57 631 33 0.33 1.55 1:2 10.23 500 41 2.09 **P9** 1.60 1:2 3.70 500 35 0.65 **P10** 3.97 1.92 1:4 10.50 900 42 **P11** ò F1 - [60]PCBM 1.90 1:4 8.1 900 35 2.55 **P12**

Adv. Funct. Mater. 2010, 20, 4351

I-V characteristics and IPCE spectra of low band gap copolymers

P9: $I_{sc} = 10.23 \text{ mA/cm}^2$, $V_{oc} = 0.5V$, FF = 41%, PCE = 2.1% **P11**: $I_{sc} = 10.50 \text{ mA/cm}^2$, $V_{oc} = 0.9V$, FF = 42%, PCE = 4.0%

Photodetectors based on P11/[60]PCBM blend

Transient response of the organic photodetector to a 10 ns light pulse from a nitrogen laser (337 nm) at different shift voltages. The active area was 0.5 cm² and a load resistance of 16 Ω .

Detection of 1 ms light pulses of blue LED modulated at 250 Hz with the organic photodetector. Black line photodetector response, blue line - light power.

Response time \sim 30-40 ns, decay time \sim 1 µs.

Organosilicon nanostructures luminophores

and "molecular antennae" effect

Macromolecules 2012, 45, 2014

Absorption and luminescence spectra of dendrimer D23 and model stars

Absorption spectra of dendrimer D23 consists of a absorption bands of its 2T and 3T components, but its luminescence spectra coincides with those of 3T fragments independently of excitation wavelength

Highly luminescent oligoarylsilane "molecular antennas"

Mendeleev Commun. 2011, 21, 89

Compound	λ_{abs}, nm	Q _F ,%	$\lambda_{lum} nm$	Q _{ETE} ,%
D2TP	336, 407	46	456 /487	88 +/- 3
B 1	336, 404	55	456 /487/521	99 +/- 1
B2	337, 404	55	456 /486/522	90 +/- 10
B3	331, 375, 396	80	418	82 +/- 10

Plastic scintillators and their applications

In medicine

Radiation control on nuclear power stations

X-ray tomography

Radiation control at the boarders $_{\rm 29}$

Application in organic photonics: plastic scintillators

New scintillator with nanostructured luminophores

Efficiency relative to anthracene crystal

BC-400

ISPM-Nano

 UPS-973

Photoregistrator

Efficiency, %

Plastic scintillators with the efficiency exceeding those of anthracene crystals!

Polystyrene nanoscintillators

Efficient yellow and red wavelength shifters have been created

VUV Wavelength sifters for noble gas detectors

Fig 1. Emission spectrum of LXe (1), absorption spectrum of p-terphenyl (2), absorption spectrum of new WLS (3), emission spectrum of p-terphenyl (4), emission spectrum of new WLS (5), photon detection efficiency (PDE) of the CPTA "blue-sensitive" photodiode (6), right axis.

Nuclear Instruments and Methods in Physics Research A (in press), doi:10.1016/j.nima.2011.12.036.

Conclusions

• Soluble oligothiophenesilane multipods are promising materials for organic BHJ solar cells and photodetectors with the response time of 20 - 30 ns .

• Silicon atoms brake the conjugation between the adjacent luminophores that allows creation of organosilicon nanostuctured luminophores, which can be used in highly efficient and fast plastic scintillators and wavelength shifters.

• Light output of the "plastic nanoscintillators" can exceed those of the standard BC408 more then 1,6 times and even exceed the efficiency of anthracene crystals.

Acknowledgements

ISPM RAS (Russia)

Y.N. Luponosov E.A. Kleymyuk E.A. Myshkovskaya M.S. Polinskaya Prof. A.M. Muzafarov

IPCP RAS (Russia)

P.A. Troshin E.A. Khakina D.A. Susarova Prof. V.F. Razumov

INEOS RAS (Russia)

M.I. Buzin A.P. Pleshkova S.N. Peregudova

INEP CP RAS (Russia)

Y.L. Moskvin S.D. Babenko

ITEP (Russia)

D.Y. Akimov

A.V. Akindinov I.S. Alexandrov A.A. Burenkov M.V. Danilov A.G. Kovalenko V.N. Stekhanov

H.C.Starck Clevios GmbH (Germany)

Dr. Stephan Kirchmeyer Dr. Timo Meyer-Friedrichsen Dr. Andreas Elschner

\$\$\$ Russian Foundation for Basic Research, Presidium of Russian Academy of Sciences, Russian Ministry for Science and Education, H.C. Starck GmbH

Thank you for your attention!