ФАЗООБРАЗОВАНИЕ В СИСТЕМЕ V-B-C-О И ФОРМИРОВАНИЕ СЛОЕВ БОРИДОВ ВАНАДИЯ ПРИ ВОЗДЕЙСТВИИ ЭЛЕКТРОННОГО ПУЧКА В ВАКУУМЕ

А.С.Милонов, Н.Н.Смирнягина,

Отдел физических проблем при Президиуме БНЦ СО РАН, 670047 Улан-Удэ, Россия, E-mail: <u>ionbeam@ofpsrv.bsc.buryatia.ru</u>

Выполнено термодинамическое моделирование с целью выявления механизма и последовательности фазовых превращений, протекающих при синтезе слоев боридов ванадия на поверхности железоуглеродистых сплавов. Обсуждено влияние давления и температуры, состава борирующего компонента на фазообразование в системе V-B-C-O₂, построены изотермические сечения тройных систем V₂O₃-B-C, V₂O₃-B₄C-C, получены слои VB₂, V₃B₄, VB и изучены микроструктура и микротвердость.

Введение

Насыщение поверхностных слоев металлов и сплавов бором проводят с целью повышения их поверхностной твердости, износостойкости и т.д. Многокомпонентные слои, содержащие в своем составе бориды тугоплавких металлов, как правило, формируют методами химикотермической обработки в результате взаимодействия борирующего компонента с тугоплавким, либо за счет насыщения бором тугоплавкой примеси металла или сплава.

В [1-3] сообщалось о формировании упрочняющих покрытий на основе боридов тугоплавких металлов (TiB₂, CrB₂, W₂B₅) на углеродистых сталях под воздействием электронного пучка в вакууме на борсодержащие обмазки. Поскольку формирование боридных слоев осуществлялось на поверхности железоуглеродистых сплавов, то при выборе условий синтеза боридов тугоплавких металлов необходимо было учитывать особенности плавления металлической основы. Как известно [4], порошкообразные бориды синтезируют разнообразными методами, одним из которых является восстановление оксидов металлов смесью бора и углерода при температурах 1500-2000°С в вакууме. Температурный интервал 1500-2000°С не подходит для синтеза слоев боридов, так как упрочняемая углеродистая сталь плавится при более низких температурах. Для оптимизации процесса синтеза боридов необходимо было учитывать поведение исходных и промежуточных веществ при высоких температурах в условиях вакуума (10⁻²-10⁻³ Па), знать состав фаз и характеристики равновесных превращений и т.д. При наличии термодинамических данных исходных компонентов можно получить необходимую информацию о гетерофазной системе, определить равновесные составы фаз и парциальные давления компонентов в условиях, недоступных для проведения прямых экспериментов. Основной целью термодинамических расчетов является определение оптимальных условий борирования.

В настоящей работе приведены результаты термодинамических расчетов, моделирующих взаимодействие оксида ванадия с углеродом и различными соединениями бора в равновесных условиях. Представлены данные о формировании слоев на основе боридов ванадия при электронно-лучевом борировании.

Методика термодинамических расчетов

Термодинамические расчеты выполнены с использованием многоцелевого комплекса АСТРА.4/рс. Расчеты проведены в температурном интервале 673 – 1813 К (температура плавления чистого железа Fe 1812 K) в диапазоне давлений 10⁵–10⁻⁴ Па для стехиометрических составов, в которых предполагалось образование боридов ванадия VB₂, V₃B₄ и VB.

В системе V-B-C-О возможными компонентами конденсированной фазы считались - С, В, B_2O_3 , B_4C , V, VO, V_2O_3 , V_2O_5 , V_2O_4 , V_3B_4 , VB, VB₂, VC; для газовой фазы предполагалось присутствие – O_2 , C, CO, CO₂, B, BO, BO₂, B_2O_2 , B_2O_3 , B_4C , V, VO, VO₂.

Термодинамические расчеты позволили при каждой температуре определить мольные составы фаз, давление газообразных компонентов, термодинамические свойства, в том числе полную энтальпию Н, энтропию S, равновесную теплоемкость Ср. Анализ зависимости Н(Т) в определенных температурных интервалах предоставил возможность выявить резкие изменения, которые можно было отнести к фазовым или химическим равновесным превращениям, связанным с образованием новых или промежуточных соединений. Изменение полной энтальпии Н при температуре завершения превращения, отнесенное к числу молей конденсированного вещества при температуре начала резкого увеличения I, близко к величинам эффектах ПН равновесных тепловых превращений. Кроме того, знание Н позволило определить энергозатраты Q (количество энергии или тепла), необходимые для нагревания 1 кг реакционной смеси от 298 К до температуры Т К [5,6].

Результаты и их обсуждение

Термодинамические расчеты показали, что образование VB₂ должно проходить через стадии формирования карбида ванадия VC и низшего борида V₃B₄. Установлено, что температура начала образования боридов зависит от давления в системе. На рис.1 приведены температуры образования VB₂, V₃B₄, VC в стехиометрической смеси V:B:C:O 2:4:3:3 в зависимости от давления. Так, при давлении 10⁵ Па взаимодействие V₂O₃ с различными борирующими компонентами (В2О3, В₄С, В) начинается при температурах 2400-2450 К, а при давлении 10⁻²-10⁻³ Па температура начала образования снижается до 850-900 К. Образование V₃B₄ при давлении 10⁵ Па наблюдается при 1600-1620 К, а уменьшение давления до 10⁻³ Па приводит к получению его при 830-850 К.

Образование VB₂ наблюдается при температуре 883 К. Величина теплового эффекта ПН химического превращения VC + $B_2O_3\Box VB_2$ составляет 157 кДж/моль. В смесях с участием B₄C или В первоначально должно произойти фазовое превращение с образованием оксида бора B₂O₃. Карбид B₄C или В восстанавливают оксид V2O3 до ванадия, который реагирует с углеродом с образованием карбида VC. Этот процесс должен проходить при низких температурах, при этом выделяться значительное количества, которое будет использоваться на образование VC. Эта стадия требует дополнительного источника энергии для свого инициирования, а далее процесс протекает самопроизвольно. В качестве такого источника можно использовать электронный нагрев, а именно электронный пучок в вакууме.

Химические превращения, протекающие в составах С (V_2O_3 :B:C 1:1:3 и V_2O_3 :B₄C:C 1:1:2) при давлении 10⁻³ Па, можно представить реакциями:

 $\begin{array}{lll} V_2O_3k &+ B_4Ck & \square \ VC + B_2O_3k & 273-298 \ K \\ V_2O_3k &+ Bk & \square \ V + B_2O_3k \\ 2B_2O_3k + 3 \ VC + 3 \ Ck & \square \ V_3B_4k + 6 \ CO & 410-450 \ K \\ V_3B_4k + 2B_2O_3k + 4C \square \ 3VB_2 \ k + 4CO + B_2O_2 \ 880-930 \ K \\ 2B_2O_3k + Ck \square \ B_4Ck + CO & 930-950 \ K \\ 4VB_2k \square \ V_3B_4k + V & 1570-1600 \ K \end{array}$

Синтез борида ванадия VB_2 из оксида V_2O_3 с различными борирующими компонентами протекает с минимальными энергозатратами с участием бора B, затем B_4C и B_2O_3 . Наибольшие энергозатраты наблюдаются для состава с участием оксида бора B_2O_3 , затем B_4C . Разница достигает 950 кДж/кг и 2-3 кДж/кг.

Формирование V₃B₄ происходит также через стадию синтеза карбида VC, а затем при 833 К образуется V₃B₄. Величина теплового эффекта ПН химического пре- $VC \square V_3B_4$ вращения составляет 157 кДж/моль. Незначительные избыточные количества VC и В₂О₃ взаимодействуют при температуре 993 К с газовой фазой, состоящей преимущественно из СО, с образованием в конденсированном состоянии V₂O₃. При температурах выше 1023 К начинается диссоциация оксида ванадия V_2O_3 с образованием VO и паров VO₂ и V в газовой фазе. Согласно термодинамическим расчетам V₃B₄ достаточно термически устойчив.

Борид ванадия VB образуется при температуре 1113 К в результате взаимодействия V₃B₄ с карбидом ванадия VC. Величина теплового эффекта □Н химического превращения V₃B₄+VC□VB₂ составляет 68 кДж/моль. VB устойчив до температур 1593 К. При дальнейшем повышении температуры наблюдается взаимодействие с газовой фазой (СО), в результате которого образуется V₃B₄.

На рис.2 представлен изотермический разрез (1273 К) системы V_2O_3 -В-С. Установлено, что две стороны концентрационного треугольника V_2O_3 -В и V_2O_3 -С не являются бинарными системами. Они представляют собой разрезы тройных систем V-B-O₂ и V-C-O₂, плоскостей концентрационного тетраэдра (рис.3). В этих разрезах наблюдается заметное влияние давления на фазообразование.

Рис. 3. Четырехкомпонентная система V-B-C-O

Следует отметить, что исследованная система V_2O_3 -В-С не является тройной, ее необходимо рассматривать как секущую плоскость концентрационного тетраэдра V-В-С- O_2 (рис.3). Детальное рассмотрение фазовых равновесий в тройной системе V-В- O_2 (грани концентрационного тетраэдра) позволило выявить, что разрез V₂O₃-В (одна из сто рон исследуемой тройной системы V₂O₃-В-O) не является квазибинарным во всех исследованных диапазонах температур или давлений. На рисунке 3 разрез V₂O₃-В приведен в виде пунктирной линии. Квазибинарными раз-

резами в тройной системе V-B-O2 являются VB₂-B₂O₃, V₃B₄-B₂O₃. Эти разрезы

являются квазибинарными при темпера-

9- VB,VC,V₃B₄; 10-V,VB,VC; 11-VO,VB,V; 12-VO,V₃B₄,VB; 13-VO

X	арактер	фазовых	превращени	йва	гройной	системе	V ₂ O ₃ -B-C

Появление фаз	Температура, К				
	10 ⁻⁴ Па	10 ⁻³ Па	10 ⁻² Па		
V_3B_4 , VB_2 , V_2O_3	873, 973	973	973		
V_3B_4 , VB_2 , VB , V_2O_3	1073	1173	1273		
V ₃ B ₄ , VB ₂ , VB, VO,V	1173	1273	1373		

V₃B₄, VB₂, VB, VO_{область}, V

турах от 873 К до 1373 К и давлениях от 10^{-2} до 10^{-4} Па. Квазибинарность разрезов VB-V₂O₃, V₃B₄-V₂O₃ и VB-VO, V₃B₄-VO зависит от температуры, поскольку оксид ванадия VO устойчив при высоких температурах в отличие от V₂O₃.

Анализ фазовых равновесий показал, что при давлении 10^{-3} Па в тройной системе V₂O₃-B-C при температурах 873-973 К образуются бориды V₃B₄ и VB₂. Квазибинарными разрезами будут: VB₂-C, VB₂-B₄C, а также V₃B₄-V₂O₃, V₃B₄-VO, V₃B₄-VC, и V₃B₄-C. На рис. 2 можно выделить область 3, где присутствуют фазы V₃B₄ и VB₂ и B₂O₃, из-за небинарности разреза V₂O₃-B.

При температуре 1073 К в системе V_2O_3 -В-С образуется борид ванадия VB. В связи с этим появляется дополнительные области 8, 9 и 10, содержащие фазы- V_3B_4 , VC, VB; VB, VO, VC и V_3B_4 , VO, VB, соответственно.

Повышение температуры до 1173 К приводит к изменению фазовых равновесий с участием оксида V_2O_3 на оксид VO в тройных системах V-B-O₂ и V-C-O₂, являющихся гранями концентрационного тетраэдра. Поскольку стороны V_2O_3 - В и V_2O_3 - С не являются двойными системами, то в них появляется устойчивый оксид VO, область существования которого увеличивается по мере повышения температуры от 1173 до 1473 К.

Кроме того, с повышением температуры от 1173 К наблюдается усложнение фазового состава за счет появления в системе конденсированного ванадия.

Особенностью системы V_2O_3 -В-С является наличие области однофазного оксида VO (поле 13, рис.2). Уменьшение давления с 10^{-2} до 10^{-4} Па приводит к увеличение области ($60\Box 55$ мол % V_2O_3). Снижение температуры приводит к фазовому превращению, исчезновению оксида

1273-1473 1373 1473

VO и появлению V₂O₃ и V₃B₄ (табл.).

Анализ термодинамических расчетов позволил определить оптимальные условия образования боридов ванадия. В качестве борирующего компонента выбран карбид бора B_4C . Некоторый недостаток углерода в стехиометрических смесях мы решили компенсировать введением органического связующего, который обычно используется в борирующих обмазках для связки и придания технологичности при нанесении последней на обрабатываемую поверхность.

Синтез боридов ванадия осуществляли на поверхности образцов, изготовленных из углеродистой стали Ст45. Образцы готовили путем нанесения обмазки на предварительно подготовленную поверхность стали. В состав обмазки входили 1:1 по объему смеси оксидов, борсодержащих компонентов и углерода, а также органическое связующие - раствор 1:10 клея БФ-6 в ацетоне. Обработку образцов проводили в течение 2-5 минут при мощности электронного пучка 150-300 Вт. Давление в вакуумной камере не превышало 2 10⁻³ Па.

Электронный нагрев проводили с помощью электровакуумной установки, содержащей аксиальную электронную пушку ЭПА-60-04.2 с блоком управления БУЭЛ [7]. Синтез боридов VB₂, V₃B₄ и VB осуществляли из реакционных смесей, содержащих V₂O₃, B₄C и углерод. В качестве исходных веществ использовали B₄C (технический), древесный уголь (березовый), V₂O₃ – "осч".

По данным рентгенофазового анализа во всех продуктах термообработки стехиометрических смесей (на поверхности металла и в порошкообразных остатках обмазок) образуются соответствующие бориды VB₂, V₃B₄, VB. Однако на рентгенограммах боридных слоев присутствовали рефлексы разной интенсивности, принадлежащие ванадированному ферриту (α-Fe₉V, объемно-центрированная кубическая ячейка с параметрами а=0,2878 нм, Пр.гр. Im3m), карбиду VC (гранецентрированная кубическая ячейка с параметрами а=0,4165 нм, Пр.гр. Fm3m).

На рис.4 представлены микроструктуры слоев боридов VB₂, V₃B₄, VB. Толщина слоя VB₂ – 100-230 мкм, V₃B₄ -150-200 мкм, VB- 100-150 мкм.

Рис.4. Микроструктура слоев VB₂, V₃B₄, VB на стали Cт45, *a*, $\beta \Box 500 \ \delta \Box 500$

Рис.5 Распределение микротвердости в слоях боридов VB₂ (а) и VB (б)

Микротвердость слоев боридов VB₂, и VB представлена на рис.5. Слои VB₂-1-VB₂-3 соответствуют условиям формирования, соответственно 1 или 3 слоя обмазки реакционной смеси. Измерение микротвердости подтвердило сложное строение слоев, их неоднородность, обусловленное наличием различных фаз.

Список литературы

[1] *Смирнягина Н.Н., Сизов И.Г., Семенов А.П.* //Неорган. материалы, 2002, Т.138, №1, С.48-54.

[2] Смирнягина Н.Н., Сизов И.Г., Семенов А.П., Ванданов А.Г. //МиТОМ, 2002, №1, С.32-36 [3] Смирнягина Н.Н., Сизов И.Г., Семенов А.П.,.Ванданов А.Г. //ФиХОМ, 2001, №2, С.63-67.

[4] Самсонов Г.В., Виницкий И.М. Тугоплавкие соединения.М.:Металлургия 1976. 560 с.

[5] Ватолин Н.А., Моисеев Г.К., Трусов Б.Г. Термодинамическое моделирование в высокотемпературных неорганических системах. М.Металлургия, 1994. 352с.

[6] Применение ЭВМ для термодинамических расчетов металлургических процессов. /Синярев Г.Б., Ватолин Н.А., Трусов Б.Г., Моисеев Г.К. М.:Наука, 1982, 264с.

[7] Мощная плавильная технологическая печь с электронно-лучевым нагревом / Григорьев Ю.В., Семенов А.П., Нархинов В.П. и др. //Комплексное использование минерального сырья в Забайкалье. Улан-Удэ, 1992, С.139-148.