СИНТЕЗ И СВОЙСТВА СЛОЕВ БОРИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ, СФОРМИРОВАННЫХ ПОД ВОЗДЕЙСТВИЕМ ЭЛЕКТРОННОГО ПУЧКА В ВАКУУМЕ

Н.Н.Смирнягина

Отдел физических проблем при Президиуме БНЦ СО РАН, 670047 Улан-Удэ, Россия, E-mail: <u>ionbeam@ofpsrv.bsc.buryatia.ru</u>

Выполнено термодинамическое моделирование (ASTRA-4/pc) и обсуждено влияние давления (10^{-2} - 10^{-4} Па) и температуры (773 К- 1473 К), состава борирующего компонента, роли оксида B₂O₃ на фазовые соотношения в системах Me-B-C-O (Me=Ti, Zr, V). Построены изотермические/изобарические сечения систем MeO₂-B₂O₃-C (Me=Ti,Zr). Сформированы слои MeB₂ на углеродистых сталях Cт20 и 45 при воздействии электронного пучка в вакууме, определен химический и фазовый состав, и исследована микроструктура.

В [1-3] выполнено термодинамическое моделирование в системах TiO₂-B(B₄C, B₂O₃)-С и V₂O₃-B(B₄C, B₂O₃)-С в с целью поиска оптимальных условий синтеза и образования слоев боридов МеВ2 под воздействием электронного пучка. Установлено, что при давлении 10⁻²-10⁻³ Па взаимодействие TiO₂ и V₂O₃ с различными борирующими компонентами (В, В₄С, B₂O₃) и углеродом возможно при 872-973 К. Показана последовательность химических превращений, протекающих при синтезе МеВ₂, указана роль оксида бора В₂О₃ в фазообразовании. Как известно [4-6], существуют и другие кислородные соединения бора в парах при высоких температурах, в частности, В2О2, присутствие, которого играет решающую роль в процессе восстановления оксидов переходных металлов бором в присутствии углерода в вакууме (10⁻¹-10⁻² мм.рт.ст., или соответственно 10 - 1 Па). Несмотря на то, что этот метод широко применяется в промышленности для получения порошков боридов, фазовые равновесия в тройных системах МеО2- В(В4С, В2О3)-С недостаточно изучены.

В настоящей работе приведены результаты термодинамических расчетов, моделирующих характер термического поведения B_2O_3 в присутствии углерода в условиях вакуума (давление 10^{-1} - 10^{-3} Па). На основании расчетов фазовых равновесий построены изотермические/изобарические разрезы тройных систем MeO₂- B_2O_3 -C (Me=Ti, Zr) и показано влияние испарения B_2O_3 при формировании слоев боридов MeB₂.

Термодинамические расчеты выполнены с использованием многоцелевого комплекса АСТРА.4/рс [7, 8]. В банке данных программы имеются термодинамические сведения для боридов, карбидов, оксидов титана, циркония и ванадия. Расчеты проведены в температурном интервале 673 – 1873 К в диапазоне давлений 10⁵-10⁻⁴ Па. Образование твердых растворов в конденсированном состоянии не учитывали. В системе Ті-В-С-О в качестве возможных компонентов конденсированной фазы считали – C, B, B_2O_3 , B_4C_3 , Ті, ТіВ, ТіВ₂, ТіС, различные оксиды титана: TiO, TiO₂, Ti₂O₃, Ti₃O₅, Ti₄O₇; в системе Zr-B-C-O – учитывали ZrC, ZrO₂, и, наконец, в системе V-B-C-O возможными оксидами были: V, VO, V₂O₃, V₂O₅, V₂O₄, а боридами: V₃B₄, VB, VB₂. В газовую фазу включали – O₂, CO, CO₂, пары B, BO, BO₂, B₂O₂, B₂O₃, B₄C, Ti, TiO, TiB, Zr, ZrO, ZrO₂, и V, VO, VO₂.

Фазовые равновесия в тройных системах исследованы во всей концентрационной области через 1-5 мол%. Были построены изотермические разрезы в интервале температур от 773 до 1473 К в диапазоне давлений $10^{-2} - 10^{-4}$ Па.

Термодинамические расчеты позволили при фиксированных значениях температур и давлений определить равновесные составы фаз в конденсированном состоянии, парциальное давление газообразных компонентов и термодинамические свойства. Знание энтальпии позволило определить энергозатраты Q (количество энергии или тепла), необходимые для нагревания 1 кг рабочего тела от 298 К до необходимой температуры К [7].

Результаты и их обсуждение.

Образование боридов тугоплавких металлов MeB₂ (Me=Ti, Zr, V). Термодинамические расчеты показали, что для синтеза боридов предпочтительно использовать В или В₄С. Наибольшие энергозатраты наблюдаются для составов с участием B₂O₃, наименьшие для B₄C, а затем для бора. Разница достигает величин 550-600 кДж/кг и 2-3 кДж/кг (Ti-B-C-O), и 950 кДж/кг и 2-3 кДж/кг (V-B-C-O).

Особенностью фазообразования в смесях с участием B_4C и В является появление при низких температурах некоторого количества B_2O_3 и соответствующего карбида, а далее они взаимодействуют при более высоких температурах с образованием боридов.

Термическое поведение В₂О₃.

В настоящей работе предпринята попытка термодинамического рассмотрения термического поведения B₂O₃, поскольку именно он определяет фазообразование в исследованных тройных системах. В качестве возможных компонентов конденсированной фазы учитывали B, B₂O₃ ; в газовую фазу включали – О, О2, В, и все известные кислородные соединения бора: BO, BO₂, B₂O₂, B₂O₃, B₂O. Установлено, что B_2O_3 при давлении 10^5 Па испаряется при 2335 К, при этом оксид В₂О₂ появляется в парах при 2113 K, а B₂O₃ при более высокой температуре (> 2273 К). Наряду с испарением В₂О₃ (2335 К), в газовой среде можно наблюдать процесс диссоциации В2О2 с образованием оксидов BO₂, BO, а также атомарного и молекулярного кислорода (рис.1). При температуре 2773 К в парах появляется атомарный бор.

Рис.1. Состав газовой фазы при испарении B_2O_3 при давлении 10^5 Па

Снижение давления в системе приводит к изменению характера диссоциации. Начиная с давления 1 Па, B₂O₃ диссоциирует, образуя оксиды BO₂, B₂O₂ и BO, последний является наиболее термически

Рис.2. Состав газовой фазы при испарении B_2O_3 при давлении $10^{\mbox{-3}}\ \Pi a$

устойчивым. Появление атомарного и молекулярного кислорода наблюдается

при более высоких температурах. Снижение давления до 10^{-3} Па приводит к образованию О при 1273 К, а O₂ -1373 К, при этом температура испарения и термического разложения B₂O₃ достигает 1170-1200 К (рис.2).

Необходимо подробно остановиться на взаимодействие в системе В₂О₃-С. Система В₂О₃-С представляет неквазибинарный разрез тройной системы В-С-О2. На рис.3 приведены фазовые равновесия в системе В-С-О₂ при давлении 10⁻³ Па. Установлено, что в температурном интервале от 973 К до 1473 К разрезы В₄С-СО, В₂О₃-СО, $B_2O_3-CO_2$ являются квазибинарными. Взаимодействие В2О3 и С приводит к образованию карбида В₄С или бора (точки а и d). B₄C (a) образуется при температуре 973 К. Повышение температуры до 1173 К приводит к появлению двухфазной области 5 (В₄Ск и СО). На разрезе В₂О₃-С нанесены отрезки ав и ас. При температуре 1273 К В₂О₃ испаряется и диссоциирует с образованием В₂О₂, ВО в газовой

Рис. 5. Фазовые равновесия в системе $B-C-O_2$ при давлении 10^3 Па: $1-O_2, B_2O_3, CO_2; 2-CO_2, B_2O_3, CO;$ $3-B_2O_3, B_2O_2, CO; 4-CO, B_4C, C; 5-B_4C, CO,$ $6-B_4C, BO, B_2O_2, 7-B_4C, B, CO$

фазе. Появляется область 3, в которой находятся газообразные B_2O_2 , CO и пары B_2O_3 (отрезок *c*- B_2O_3). При этой температуре образуется бор (*d*). Области 6 и 7 являются трехфазными: (Вк, B_2O_2 и CO, отрезок *cd*) и (Вк, B_4C к, CO, отрезок *ad*). Таким образом, установлено, что взаимодействие оксида B_2O_3 и углерода определяет фазообразование в тройных системах MeO₂-B(B₄C,B₂O₃)-C.

Фазообразование в системах ZrO₂-B₂O₃-C

Мы попытались смоделировать фазовые равновесия в системах MeO_2 - B_2O_3 -C. Следует отметить, что исследованные системы не являются тройными, поскольку две стороны концентрационного треугольника (MeO₂-C, B₂O₃-C) не бинарные разрезы.

На рис.4 приведены фазовые равновесия в системе ZrO_2 - B_2O_3 -С при давлении 10^{-3} Па (изобарическое сечение). Отметим, что эта система характеризуется наиболее простыми фазовыми соотношениями. В ней при 913 К образуется борид ZrB₂, а при 973 К в разрезе ZrO₂-C, стороне концентрационного треугольника, фиксируется карбид ZrC. В системе ZrO₂-B₂O₃-C в температурном интервале от 973 К до 1473 К можно выявить разрезы ZrO₂-ZrB₂, ZrB₂-ZrC, ZrB₂-C и ZrB₂-B₄C.

Рис.4. Изобарическое сечение (10⁻³ Па) в системе ZrO₂-B₂O₃-C: *1*-ZrO₂-ZrC-ZrB₂, *2*- ZrC-ZrB₂-C, *3*-B₄C-ZrB₂-C, *4*- B₄C-ZrB₂, *5*-ZrB₂-B₂O₃-B₄C, *6*-ZrO₂-ZrB₂-B₂O₃, *7*- ZrO₂-ZrB₂, *8*-ZrO₂-B₂O₃, *9*- ZrB₂-B-B₄C

Повышение температуры до 1173 К приводит к появлению двухфазной области 4, содержащей ZrB_2 и B_4C . Поскольку состав B_4C в этих условиях изменяется по отрезку *ab* (1073 K), *ac* (1173 K) (рис.3), то область 4 увеличивается от $B_4C(a)$ до 50 мол % B_2O_3 на стороне B_2O_3 -С концентрационного треугольника.

Разрез ZrB₂-B₂O₃ существует в интервале температур от 973 К до 1073 К, и при этом формируется область 5, содержащая ZrB₂, B₂O₃ и B₄C. Обнаружено, что области 4 и 5 изменяют свои размеры из-за термического особенности поведения B₄C. Далее, при 1173 К и 1273 К из-за испарения и диссоциации B₂O₃ в системе В2О3-С появляется область 51-66 мол% В2О3, в которой фиксируются лишь газообразные компоненты - В2О3, В2О2 и СО (область 3, рис.3). Это приводит к появлению области 7, в которой присутствует лишь ZrO₂, поскольку разрез ZrO₂-ZrB₂ трансформируется в отрезок ZrO₂-с. Это происходит из-за того, что однофазный борид ZrB₂ обнаруживается не в точке стехиометрического состава, а на отрезке ZrB₂-с. Область 8 является двухфазной, в ней присутствуют ZrO₂ и расплав B₂O₃. Дальнейшее повышение температуры приводит к появлению ZrO₂ в областях 7 и 8.

Таким образом, термодинамическое изучение фазообразования в системе ZrO_2 - B_2O_3 -C позволило выявить термические свойства борида ZrB_2 . Установлено, что ZrB_2 фиксируется лишь при давлении < 10 Па в температурном интервале от 873 до 1473 К. Повышение температуры приводит к взаимодействию ZrB_2 с газовой средой (CO) и образованию примеси – ZrC. При более высоком давлении в стехиометрических смесях обнаруживается присутствие примесей - ZrO_2 и углерода.

Фазообразование в системах TiO₂-B₂O₃-C.

Обнаружено, что борид ТіВ2 также термически устойчив. В продуктах разложения могут быть TiC, а также C, B₄C или В. Характер его термического разложения зависит от давления в системе. При давлении от 10⁻⁴ до 1 Па в присутствии газовой фазы (СО) борид TiB₂ последовательно разлагается с образованием ТіС и С, а затем – ТіС, однако содержание этих примесей незначительно, не превышает 0,01 – 0,1 мол %. Повышение давления от 1 до 10^5 Па меняет характер разложения и в качестве примесей можно обнаружить карбид В₄С или бор. Эти фазы существуют при температурах, интервал которых увеличивается с повышением давления.

В моделируемой нами системе Ti-B-C-O₂ возможно также и образование борида TiB. Согласно [5-6], TiB разлагается в твердой фазе при давлении 10^5 Па. Как показали термодинамические расчеты, TiB образуется лишь в газовой фазе при давлении выше 10^{-1} Па.

На рис.5 представлен изотермический разрез при 1073 К в системе TiO_2 - B_2O_3 -C. Установлено, что взаимодействие начи-

5-TiB₂-TiC-C, 6-TiB₂-B₄C-C, 7-TiB₂-B₄C,

8-B₂O₃-TiB₂-B₄C, 9-TiB₂-Ti₂O₃

нается с диссоциации оксида титана TiO₂ с образованием Ti₄O₇ в интервале температур 720-800 К. Карбид титана образуется при взаимодействии оксида Ti₄O₇ и углерода при температурах 830-850 К, а далее он реагирует с оксидом бора B₂O₃ с образованием борида TiB₂. Величина теплового эффекта □Н химического превращения TiC+B₂O₃□TiB₂ составляет 175-177 кДж/моль.

В этой системе при температуре 1073 К представлены разрезы: B_2O_3 -Ti $_4O_7$, B_2O_3 -Ti $_2O_3$, B_2O_3 -Ti B_2 . TiC-TiB $_2$, TiB $_2$ -C, TiB $_2$ -B $_4$ C. При понижении давления с 10^{-2} до 10^{-4} Па появляется двухфазная область 7, содержащая TiB $_2$ и B $_4$ C. Это связано с поведением карбида B $_4$ C, которое проявляется наличием отрезков B $_4$ C-*b* и B $_4$ C-*c*, в системе B $_2O_3$ -C, стороне концентрационного треугольника. Составы точек *b* (36 мол % B $_2O_3$) и *c* (50 мол % B $_2O_3$). При этом однофазный борид TiB $_2$ можно наблюдать в точке стехиометрического состава, а также на отрезке TiB $_2$ -*c*.

Особо стоит отметить разрез Ti₂O₃-TiB₂, который меняет положение при изменении давления от 10^{-2} до 10^{-4} Па, при этом появляется двухфазная область 9. При 10⁻³ Па однофазный ТіВ₂ отражается линий TiB₂-b₂-b₁. Разрез Ti₂O₃-TiB₂ смещается вдоль линии TiB₂-b₂-b₁ до точки b₂. При этом аналогичным образом смещается разрез B₂O₃-TiB₂, и появляется двухфазная область B₂O₃-*b*₁-*b*₂ содержащая B₂O₃ и TiB₂. Дальнейшее понижение давления до 10⁻⁴ Па приводит к смещению разреза Ti_2O_3 - TiB_2 в точку c_1 , при этом двухфазная область В₂О₃-*c*₁-*c* состоит из B_2O_3 и TiB₂. Координаты точек: b_1 (8 мол % TiO₂, 30 мол % B₂O₃, 62 мол % C), *b*₂ (12 мол % TiO₂, 18 мол % B₂O₃, 70 мол % C), c1 (11 мол % TiO2, 21 мол % B2O3, 68 мол % С). Область 8 наблюдается при давлениях 10^{-2} и 10^{-3} Па и содержит B_2O_3 . ТіВ2 и В4С.

Таким образом, бориды MeB_2 (Me=Ti, Zr, V) можно получить в смесях, содержащих $12\Box 14$ мол % $MeO_2 - 14\Box 20$ мол % $B_2O_3 - 67\Box 71$ мол % C, при температурах 973 K-1473 при давлении в диапазоне от 10^{-2} до 10^{-4} Па.

Синтез и свойства слоев МеВ₂.

Анализ термодинамических расчетов позволил определить оптимальные условия образования боридов переходных металлов. Синтез TiB₂, ZrB₂ и VB₂ осуществляли на поверхности образцов, изготовленных из углеродистой стали Ст20 и 45. Образцы готовили путем нанесения борирующих обмазок на предварительно подготовленную поверхность сплава. В состав обмазки входили 1:1 по объему смеси оксидов, борсодержащих компонентов и углерода, а также органического связующего - раствора 1:10 клея БФ-6 в ацетоне. Обработку образцов проводили в течение 2-5 минут при мощности электронного пучка 150-300 Вт. Давление в вакуумной камере не превышало 2 10³ Па

Электронный нагрев проводили с помощью электровакуумной установки, содержащей аксиальную электронную пушку ЭПА-60-04.2 с блоком управления БУЭЛ [9]. В качестве исходных веществ использовали B_4C (технический), древесный уголь (березовый), V_2O_3 –"хч", TiO₂ – "осч" (ругил). TiO₂ (анатаз) и ZrO₂ (моноклинная фаза) получали из соответствующих азотнокислых солей титанила и цирконила при прокаливании при 550-650°C в течение 5-10 часов.

На рис.6 представлены микроструктуры слоя ZrB₂, исследованные на сканирующем электронном микроскопе LEO 1430VP. Одновременно определен химический состав боридного слоя. Рентгеноспектральный анализ выполнен с использованием энергодисперсионного анализатора INCA Energy 300 Oxford Instruments. Следует отметить, что одновременное определение Zr и B невозможно ввиду перекрытия аналитических линий Kα серии этих атомов. Определение бора во всех исследованных образцах сопровождалось высокой погрешностью, что приводило только к качественному анализу. Как видно из рис.6, слои в поперечном срезе неоднородны в распределении фаз по толщине. Можно наблюдать светлые включения (рис.6.а, б), основная масса которых хаотически сосредоточена около или вблизи поверхности слоя, и содержит атомы Zr и C.

Во всех исследованных образцах наблюдали четкую границу раздела "слойметалл". Однако в слое обнаруживаются светло серые овальные включения, химический состав которых аналогичен стали 45 (рис.6.а и в). Наряду с этим, в слое фиксируются черные вкрапления, в состав которых входят атомы Zr и Fe.

Рис. 6. Строение слоя ZrB₂

По данным рентгенофазового анализа (дифрактометр D8 Advance, Cu K_{λ}- излучение, Si стандарт) на поверхности боридных слоев присутствуют следующие фазы: ZrB₂, ZrC, ZrO₂, Fe₃Zr, \Box -Fe. Присутствие исходного оксида ZrO₂ и карбида ZrC может свидетельствовать, о том, что при электронно-лучевой обработке в вакууме происходит испарение промежу-

точного оксида B_2O_3 , что приводит к отклонению от стехиометрии. Для того чтобы уменьшить это влияние до минимума, попробовали сформировать слои под защитным слоем аморфного оксида B_2O_3 .

На рис.7. приведено строение слоев VB_2 , сформированных на CT20 без (рис.7.а) и с (рис.7.б) защитным слоем B_2O_3 .

Рис.7. Строение слоев: a- VB₂ ; б- VB₂+B₂O₃

Следует отметить, что применение защитного слоя аморфного оксида B₂O₃ (1:1 по объему реакционная обмазка: обмазка на основе B₂O₃) приводит к формированию более равномерных боридных слоев. Можно выделить светло серые овальные включения (т. 3 и 4, рис.7.а и т. 2, 6, 7 рис.7.б) и светлую полосу на границе раздела "слой-металл", которые содержат до 0,9-1,15 вес % V; черные включения (т. 5 и 6, рис.7.а), принадлежащие карбиду (бориду) ванадия с содержанием до 84-88 вес.% V; а также эвтектические дендриды с 3,01-3,65 вес % V. На рентгенограммах можно наблюдать рефлексы отражений, принадлежащие фазам: ванадированному ферриту \Box -Fe-V, соответствующему \Box -Fe₉V; VB₂; VC.

Рис.8. Строение слоев на поверхности C20: а- CrB₂ (250), б-CrB₂+B₂O₃ (2300), в- CrB₂+B₂O₃

Наиболее интересно строение слоев боридов CrB_2 (рис.8). Слои однородные, без больших областей включений как для случая с или без защиты B_2O_3 . Имеются небольшие овальные серые включения дендритного типа, которые располагаются в определенном порядке и содержание хрома в них не превышает 0,19 вес % (рис.8.в). Кроме того, можно наблюдать эвтектику, а также отдельные черные вкрапления, в которых присутствуют атомы Cr и C (В). По данным РФА, слои содержат фазы: CrB₂, (Fe,Cr)B, \Box -Fe.

Список литературы

[1] *Смирнягина Н.Н., Сизов И.Г., Семенов А.П.* //Неорган. материалы, 2002, т.138, №1, с.48-54.

[2] Смирнягина Н.Н., Сизов И.Г., Семенов А.П., Ванданов А.Г. //МиТОМ, 2002, №1, с.32-36

[3] Смирнягина Н.Н., Сизов И.Г., Семенов А.П.,.Ванданов А.Г. //ФиХОМ, 2001, №2, с.63-67.

[4] Самсонов Г.В., Виницкий И.М. Ту-

гоплавкие соединения.М.:Металлургия 1976. 560 с.

[5] Высокотемпературные бориды. Серебрякова Т.И., Неронов В.А., Пешев П.Д.. М. Металлургия, Челябинское отделение. 1991. 368 с.

[6] Самсонов Г. В., Серебрякова Т. И., Неронов В. Л. Бориды. М., Атомиздат, 1975. 376 с.

[7] Ватолин Н.А., Моисеев Г.К., Трусов Б.Г. Термодинамическое моделирование в высокотемпературных неорганических системах. М.Металлургия, 1994. 352с.

[8] Применение ЭВМ для термодинамических расчетов металлургических процессов. /Синярев Г.Б., Ватолин Н.А., Трусов Б.Г., Моисеев Г.К. М.:Наука, 1982, 264с.

[9] Мощная плавильная технологическая печь с электронно-лучевым нагревом / Григорьев Ю.В., Семенов А.П., Нархинов В.П. и др. //Комплексное использование минерального сырья в Забайкалье. Улан-Удэ, 1992, С.139-148.