ФАЗОВЫЙ СОСТАВ И СТРУКТУРА СЛОЕВ ТІВ₂ И ZRB₂, СФОРМИРОВАННЫХ НА ПОВЕРХНОСТИ УГЛЕРОДИСТЫХ СТАЛЯХ ПРИ ЭЛЕКТРОННО-ЛУЧЕВОЙ ОБРАБОТКЕ В ВА-КУУМЕ

Б.Б.Цыренжапов, Н.Н.Смирнягина, А.П.Семенов

Отдел физических проблем при Президиуме БНЦ СО РАН, 670047 Улан-Удэ, Россия, E-mail: <u>ionbeam@ofpsrv.bsc.buryatia.ru</u>

Выполнено термодинамическое моделирование и обсуждено влияние давления и температуры, состава борирующего компонента, роли оксида B_2O_3 на фазообразование в системах MeO_2 - B_2O_3 -C (Me=Ti,Zr). Построены изотермические сечения тройных систем. Сформированы слои MeB_2 и изучены микроструктура и микротвердость.

Введение

Насыщение поверхностных слоев металлов и сплавов бором проводят с целью повышения их поверхностной твердости, износостойкости и т.д. Применение электронного нагрева с высокой (>10⁹ Вт/м²) удельной мощностью в вакууме благодаря быстрому безынерционному достижению предельно высоких температур и легкости регулирования нагрева в широком диапазоне температур открывает широкие возможности для создания защитных слоев на основе боридов тугоплавких металлов. В [1] сообщалось о формировании упрочняющих покрытий на основе TiB₂, CrB₂, VB₂, W₂B₅ на углеродистых сталях под воздействием электронного пучка на борсодержащие обмазки в вакууме.

Как известно [2], порошкообразные бориды переходных металлов получают разнообразными методами, одним из которых является восстановление оксидов металлов смесью карбида бора и углерода при температурах 1500-1800°С в вакууме (около 10⁻² мм рт.ст.) в течение 1 часа в печах с графитовыми или металлическими нагревателями. Этот метод прост в исполнении, пригоден для получения боридов в больших количествах, не требует дополнительной очистки продуктов, высокопроизводителен и экономичен. Однако температуры 1500-1800°С значительно превышают температуру плавления упрочняемого железоуглеродистого сплава. Снижение давления приводит к уменьшению температуры образования боридов титана, что позволяет осуществить одновременно синтез и формирование слоев [3,4]. Механизм и основные закономерности этого процесса остаются мало изученными. В связи с этим весьма актуально термодинамическое моделирование процесса синтеза боридов в условиях, недоступных для проведения прямых экспериментов.

В настоящей работе приведены результаты термодинамических расчетов, моделирующих взаимодействие оксидов MeO₂ с С и различными соединениями бора в равновесных условиях, а также термического поведения боридов MeB₂. Представлены данные о формировании слоев TiB₂ и ZrB₂ при электроннолучевом борировании.

2. Методика эксперимента

В качестве исходных веществ использовали бор аморфный, с содержанием основного компонента не менее 95 мас % или карбид бора В4С (квалификации "технический"), древесный уголь (березовый), оксиды TiO₂ и ZrO₂ "осч". Исследования проводили на образцах, изготовленных из углеродистой стали 45 в форме цилиндров с диаметром 🗆 15 мм и высотой 7 мм. Образцы готовили путем нанесения пасты на предварительно подготовленную поверхность металла. Толщина обмазки была одинакова, не превышала 1 мм. В состав пасты входили 1:1 по объему реакционная смесь и органическое связующие - раствор 1:10 клея БФ-6 в ацетоне. После нанесения пасты образцы сушили до полного удаления ацетона. Термообработку образцов проводили течение 2-5 минут при мощности электронного пучка 150-300 Вт.

Электронный нагрев проводили с помощью электровакуумной энергоустановки специальной конструкции [5], со-

Рис.1 Конструкция установки с электроннолучевым нагревом: 1-катодная камера; 2- высоковольтный ввод; 3-ва-куумный затвор; 4вакуумная камера; 5-вакуумный агрегат АВП-250; 6-шкаф-стойка; 7-пульт управления; 8-крышка

стойки; 9-блок управления электронным пучком; 10-пульт оператора; 11-вакуумметр ВИТ-2; 12вакуумный агрегат АВП-160; 13-насос НВПР-40-066; 14-предохранительный клапан.

держащей мощную плавильную электронную пушку ЭПА-60-04.2 с блоком управления БУЭЛ и высоковольтный выпрямитель В-ТПЕ-2-30к-2У ХЛ4. Вакуумная установка предельно компактна по конструкции (рис.1).

Блок управления электронным пучком обеспечивает фокусировку электронного пучка на объекте нагрева, перемещение пучка по окружности, прямой линии и разверстку в растр. Кроме того, электронный коммутатор, встроенный в блок, легко распределяет мощность нагрева, образуя одновременно несколько объектов нагрева, и задает определенное время задержки электронного пучка на каждом из них. Остаточное давления в вакуумной камере не превышало $2\square10^{-3}$ Па.

Рентгенофазовый анализ (РФА) осуществляли на дифрактометре D-8 фирмы Bruker на Cu K_□- излучении с внутренним стандартом Si.

Микротвердость и микроструктуру сформированных слоев, определяли на микротвердомере ПМТ-3 с фотонасадкойцифровой камерой Olympus с4000 zoom с оптическим увеличением ×3. Нагрузка на алмазную пирамиду составляла 50 или 100 г.

Термодинамические расчеты выполнены с использованием многоцелевого комплекса АСТРА.4/рс [6]. В банке данных программы имеются термодинамические сведения для боридов, карбидов, оксидов титана и циркония. Расчеты проведены в температурном интервале 673 – 1813 К ($T_{nл}$. железа Fe 1812 K) в диапазоне давлений 10^5 – 10^{-4} Па. Образование твердых растворов в конденсированном состоянии не учитывали. Термодинамические расчеты позволили при определенной температуре определить мольные

составы фаз в конденсированном состоянии, давление газообразных компонентов, термодинамические свойства, в том числе полную энтальпию \Box H, энтропию \Box S, равновесную теплоемкость \Box C_p.

3. Результаты и их обсуждение.

Моделирование образование боридов MeB₂ (Me=Ti, Zr). Первоначально, термодинамические расчеты показали влияние давления в системе на условия образования борида титана [2], но это характерно и для борида циркония. Температура начала образования TiB₂ зависит от общего давления в системе. Так, при давлении 10⁵ Па взаимодействие TiO₂ с различными борирующими компонентами (В₂О₃, В₄С, В) начинается при температурах 1900-2100 К, а при давлении 10⁻²-10⁻³ Па температура начала образования снижается до 850-900 К. В случае борида ZrB₂ она снижается с 1900 К до 893 К при понижении давления с 10⁵ до 10⁻³ Па.

Синтез MeB₂ из MeO₂ (Me=Ti,Zr) с различными борирующими компонентами протекает с минимальными энергозатратами с участием бора В, затем B₄C и В₂О₃. Наибольшие энергозатраты наблюдаются для смесей с участием В2О3, затем В₄С. Разница достигает 550-600 кДж/кг и 2-3 кДж/кг. Такая значительная разница связана с разным характером взаимодействия, а именно, в смесях с участием В₄С или В первоначально должно произойти фазовое превращение с образованием оксида бора В2О3. Это связано с тем, что В₄С или В восстанавливают оксид МеО₂ до металла, который реагирует с углеродом с образованием карбида МеС. Этот процесс должен проходить при низких температурах, при этом выделяться значительное количество энергии, но для осуществления этой стадии необходим дополнительный источник энергии, т.е. процесс нужно инициировать, а далее он протекает самопроизвольно. В качестве

такого источника можно использовать электронный нагрев, а именно электронный пучок в вакууме. Если используется оксид ZrO₂, то вместо карбида ZrC на этой стадии образуется борид ZrB₂.

Термическое поведение МеВ₂. В связи с тем, что синтез слоев боридов тугоплавких металлов осуществлялся с использованием высококонцентрированного источника энергии - мощного электронного пучка, мы попытались смоделировать термическое поведение МеВ₂. Установлено, что ТіВ₂ термически устойчив. На рис.2 приведен характер термического поведения TiB₂. В продуктах разложения могут быть TiC, а также C, B₄C или B. Характер его разложения зависит от давления в системе. При давлении от 10⁻⁴ до 1 Па в присутствии газовой фазы (СО) борид TiB₂ последовательно разлагается с образованием TiC и C, а затем - TiC, однако содержание этих примесей незначительно, не превышает 0,01 – 0,1 мол %. Повышение давления от 1 до 10⁵ Па меняет характер разложения и в качестве примесей можно обнаружить карбид В₄С или бор. Эти фазы существуют в температурных интервалах, диапазон которых увеличивается с повышением давления.

В моделируемой нами системе Ti-B-C-O₂ наряду с TiB₂ возможно образование борида TiB. Согласно [7], TiB разлагается в твердой фазе при давлении 10^5 Па. Как показали термодинамические расчеты, TiB образуется лишь в газовой фазе при давлении выше 10^{-1} Па.

Характер термического разложения борида ZrB₂ аналогичен, но имеет некоторое отличие (рис.3). Однофазный борид ZrB₂ фиксируется лишь при давлениях < 10 Па. При более высоком давлении в смесях обнаруживается присутствие примесей - оксида ZrO₂ и углерода.

Таким образом, присутствие карбидов и углерода в продуктах термического разложения боридов тугоплавких металлов

может свидетельствовать о недостатке бора или его соединений.

Изотермические сечения тройных систем MeO₂-B₂O₃-C

Мы попытались смоделировать фазовые равновесия в системах MeO₂-B₂O₃-C. Следует отметить, что исследованные системы не являются тройными, поскольку две стороны концентрационного треугольника (MeO₂-C, B₂O₃-C) не бинарные системы.

1-ZrO₂-B₂O₃-B₄C, 2- ZrO₂-ZrB₂, 3- B₄C-ZrB₂, 4-ZrO₂-ZrC-ZrB₂, 5- ZrC-ZrB₂-C, 6-B₄C-ZrB₂-C, 7-B₄C-ZrB₂-B₂O₃, 8- ZrO₂-ZrB₂

Расчеты фазовых равновесий показали, что они не бинарны в тройных системах Me-C-O₂ и B-C-O, являющихся сторонами концентрационного тетраэдра.

Фазовые равновесия в системе TiO₂-B₂O₃-C более сложны, чем в ZrB₂-B₂O₃-C. Это связано с тем, что титан имеет большое число оксидов, например, Ti₄O₇, Ti₂O₃, TiO и т.д. При взаимодействии TiO₂ и C эти оксиды образуются, как промежуточные продукты. Особенность фазообразования проявляется в наличии двухфазных областей 7 (рис.4) или 3 (рис.5), в которых присутствуют MeB₂ и B₄C. Размеры областей зависели от давления. Это может быть либо разрез MeB₂-B₄C (10⁻² Па), либо некоторая область, поскольку B₄C имеет различную протяженность на стороне концентрационного треугольника: $a-b - B_4C$ (10⁻³ Па), $a-c - B_4C$ (10⁻⁴ Па) (рис.6)

Бориды тугоплавких металлов MeB_2 при температуре 1073 К и общем давлении 10^{-3} Па можно получить в смесях: $12\Box 14$ мол % $MeO_2 - 14\Box 20$ мол % $B_2O_3 - 67\Box 71$ мол % С.

Фазовый состав и микроструктура слоев MeB₂.

По данным рентгенофазового анализа образование боридов TiB_2 и ZrB_2 зависит от состава исходных оксидов MeO_2 . Так, если использовали TiO_2 со структурой ругила (оксид марки "хч"), то продуктах термообработки (на поверхности металла и в порошкообразных остатках обмазок) фиксировали присутствие борированного ругила (ASTM 01-087-0921, Пр. гр. P42/mmm с параметрами тетрагональной

элементарной ячейки: *a*=0,4609 И *c*=0,2967 нм, *z*=2). В то время, как в случае применения ТіО2 со структурой ана-01-089-4203, таза (ASTM Πр. гр. Р42/mmm с параметрами тетрагональной элементарной ячейки: a=0.3785 и *c*=0,9514 нм, *z*=2). (получали при термиразложении кристаллогидрата ческом нитрата титанила), получали борид TiB₂ (гексагональная элементарная ячейка с параметрами : *a*=0,3030 и *c*=0,3230 нм, Пр. гр. Р6/тт). Кроме этих фаз обнаруживается присутствие карбидов TiC

(ASTM 00-032-1383) и ZrC (ASTM 00-032-1489). Особенностью взаимодействия является образование промежуточных фаз - высокотемпературных β -Ti и β -Zr. В случае слоев боридов – образуются фазы - интерметаллиды, например Fe₃Zr (ASTM 00-017-0360, кубическая гранецентрированная ячейка с параметрами: a=1,169 нм, Пр.гр. Fd3m, Z=28). Микроструктуры слоев TiB₂ и ZrB₂ представлены на рис.10. Толщина слоя TiB₂ достигает 80-200 мкм, ZrB₂- 120-150 мкм.

Рис.10. Микроструктура слоев ТіВ₂ и ZrB₂: а- □130, б- □500

Слои TiB₂ не однородны, можно наблюдать на поверхности светлые включения с 18350 HV, под ними светлые включения 2 с 1375 HV, темные включения 850 HV. На границе раздела слой-металл микротвердость 600 HV, в металлической основе -290 HV.

Список литературы

Смирнягина Н.Н., Сизов И.Г., Семенов А.П., Ванданов А.Г..//ФиХОМ, 2001, №2, С.63-67.
Самсонов Г.В., Серебрякова Т.И.,

Неронов В.А. Бориды, М. 1975, 185с. [3] Смирнягина Н.Н., Сизов И.Г., Семенов А.П. //Неорган. материалы, 2002,

Т.138, №1, Сс.48-54

[4] Смирнягина Н.Н., Сизов И.Г., Семенов А.П., Ванданов А.Г. //МиТОМ, 2002, №1, С.32-36

[5] Мощная плавильная технологическая печь с электронно-лучевым нагревом / Григорьев Ю.В., Семенов А.П., Нархинов В.П. и др. //Комплексное использование минерального сырья в Забайкалье. Улан-Удэ, 1992, С.139-148.

[6] Применение ЭВМ для термодинамических расчетов металлургических процессов. /Синярев Г.Б., Ватолин Н.А., Трусов Б.Г., Моисеев Г.К. М.:Наука, 1982, 264с.

[7] Самсонов Г.В., Виницкий И.М. Тугоплавкие соединения.М.:Металлургия 1976. 560 с.