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УДК 534.6 + 532.13 

К. В. Артемьева, Ч. Ж. Гулгенов, И. Г. Симаков, С.Б. Базарова 

Институт физического материаловедения СО РАН, Улан-Удэ 

МЕТОДИКА ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКИХ 
СВОЙСТВ АДСОРБИРОВАННОЙ ВОДЫ С ПОМОЩЬЮ 

ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛН 

На границе твердой поверхности и воды образуется тонкий 
граничный слой, называемый межфазная вода, структура и свой-
ства которой отличаются от объемной воды. Межфазная вода игра-
ет важную роль в различных областях науки и техники: микроэлек-
троника, медицина и др. [1,2]. Особый интерес вызывают диэлек-
трические свойства межфазной воды, т. к. позволяют получать ин-
формацию о ее молекулярной структуре, межмолекулярных взаи-
модействиях и механизмах молекулярных процессов. Частным слу-
чаем межфазной воды является адсорбированная на твердой по-
верхности вода. 

Одним из наиболее перспективных методов исследования 
диэлектрических свойств адсорбированной воды является аку-
стоэлектрический метод, в основе которого лежит явление распро-
странения поверхностных акустических волн (ПАВ) в слоистой 
структуре: пьезоэлектрическая подложка – тонкий слой жидкости 
[3, 4]. Данное явление описывается следующими уравнениями: 
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где V0 и Vs – скорость распространения ПАВ на свободной поверх-
ности пьезоэлектрика и в слоистой структуре, ρf и ρs – плотности 
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жидкости и твердого тела, εp - относительная диэлектрическая про-
ницаемость пьезоэлектрика, ε′ и ε″ – действительная и мнимая ча-
сти комплексной диэлектрической проницаемости жидкости; Vf – 
скорость звука в жидкости,  h – толщина жидкого слоя, λ – длина 
поверхностной волны, K - коэффициент электромеханической свя-
зи, β – коэффициент ослабления звука в жидкости, который учиты-
вает потери на вязкое трение и теплопроводность [Нп/см], ω = 2πf – 
круговая частота, α – коэффициент затухания ПАВ. 
 

 
Рис. 1. Измерительная ячейка: 1 – пьезоэлектрическая подложка;  

2 – адсорбированный слой воды; 3 – встречно-штыревые преобразова-
тели; 4 – резиновые уплотнители; 5 и 6 – термостаты 

 

Для определения диэлектрических характеристик адсорби-
рованной воды используется измерительная ячейка (рис. 1) [3]. Из-
мерительная ячейка представляет собой термостатированный за-
мкнутый объем, в котором над поверхностью дважды дистиллиро-
ванной воды размещалась подложка (1) из LiNbO3. Температура 
подложки задавалась и поддерживалась циркуляционным термо-
статом (6). В результате полимолекулярной адсорбции на поверх-
ности подложки образуется тонкий слой жидкости (2). Толщина 
слоя h зависит от относительного давления пара p/ps в зоне адсорб-
ции, температуры и сродства с поверхностью (степени гидрофиль-
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ности). Необходимое p/ps в зоне адсорбции задавали, варьируя раз-
ность температур парообразующей жидкости (воды) T2 и адсорби-
рующей поверхности T1. Для вычисления величины относительно-
го давления пара в зоне адсорбции можно воспользоваться уравне-
нием Клапейрона − Клаузиуса: 
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где ps – давление насыщенного пара в зоне адсорбции при 
температуре T2, Q и R – теплота испарения (конденсации) воды и 
газовая постоянная. 

Регистрации малых возмущений затухания и скорости ПАВ 
происходит при помощи фазового интерференционного метода [5]. 

 

 

Блок-схема экспериментальной установке изображена на  
рис. 2. На излучающий преобразователь 1 подается сигнал с выхода 
генератора высокой частоты. Задержанный сигнал с приемного 
преобразователя 2 передается на вход усилителя. Одновременно на 
вход усилителя подается сигнал, ослабленный аттенюатором до 
амплитуды задержанного сигнала. Суммарный сигнал, пройдя уси-
литель, попадает на вход. В результате интерференции величина 

 
Рис. 2. Блок-схема экспериментальной установки: 1 – излучающий 

встречно штыревой преобразователь; 2 – принимающий встречно-
штыревой преобразователь 
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суммарного сигнала зависит, как от соотношения фаз интерфери-
рующих сигналов, так и соотношения их амплитуд. Баланс ампли-
туд достигается регулировкой аттенюатора, а баланс фаз пере-
стройкой частоты генератора. Генератор настраивается на частоту 
интерференционного минимума. В результате адсорбции воды на 
поверхность звукопровода изменяются условия распространения 
ПАВ. Вследствие чего изменяется скорость и амплитуда ПАВ, и 
как следствие частота интерференционного минимума. Изменение 
частоты интерференционного минимума пропорционально измене-
нию скорости ПАВ ∆f/f=∆V/V0. 

Регистрируемые изменения акустических параметров ПАВ 
связаны с компонентами комплексной диэлектрической проницае-
мости следующим образом [3]: 
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где ε′ и ε″ – действительная и мнимая части комплексной диэлек-
трической проницаемости. 

Таким образом, относительную диэлектрическую проницае-
мость адсорбированной воды можно определить, регистрируя из-
менения скорости и затухания поверхностной акустической волны.  
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ВЛИЯНИЕ ТЕХНОГЕННЫХ ШУМОВ НА ИЗМЕРЕНИЕ 
ГИДРОЭЛЕКТРОКИНЕТИЧЕСКОГО ЭФФЕКТА  

НА БЕРЕГУ ОЗ. БАЙКАЛ 
 

При измерении гидроэлектрокинетического эффекта очень 
важным фактором, влияющим на результаты измерений, является 
близость источников бытовой электросети. 

При измерениях в 2024 года на пляже села Горячинск, в допол-
нении к традиционному используемому прибору Байкал 7HR [1], 
для проверки возможностей, был добавлен регистратор Zetlab. От-
личием двух приборов заключалось в том, что у Zetlab отсутствует 
на аппаратном уровне ФНЧ. В то же время Zetlab обладает боль-
шим входным сопротивлением (100 кОм против 44 кОм – Байкал 
7HR). К преимуществам Zetlab также можно отнести наличие 8 ка-
налов, в то время как Байкал 7HR обладает 6 каналами. 

Измерения проводились аналогично работам [2], но в качестве 
регистратора был использован Zetlab. В ходе пробных измерений, 
полученные сигналы были сильно зашумлены, что не давало воз-
можности оценки динами изменения напряжения изучаемого эф-
фекта. Это объясняется наличием инфраструктуры в пляжной зоне, 
где соответственно присутствует источники бытовой электросети. 
Таким образом, часть токов от электросети затекают во входные 
цепи регистратора. Данное обстоятельство требует дальнейшей 
постобработки, в частности применения цифровых фильтров 

В процессе постобработки был построен спектр сигнала, кото-
рый и отображает гармоники, являющиеся аддитивной помехой. На 
рисунке 1 изображен спектр сигнала, снятого с одного из электро-
дов. В данном спектре присутствуют гармоника 50 Гц и нечетные 
ей (150, 250, 350, 450), которые и являются нежелательными при 
регистрации электрокинетического эффекта. Следующий шаг – 
применение цифрового ФНЧ с частотой среза около 38 Гц. Данная 
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частота выбрана в связи с тем, что такая же частота устанавливает-
ся у регистратора Байкал-7HR (при частоте дискретизации 100 Гц). 
После обработки форма сигнала приняла вид, которые отображает 
динамику изменения наблюдаемого эффекта. 

 

 

Рис. 1. Спектр сигнала с одного из электродов  
 
Заключение. При измерениях электрокинетических явлениях 

возможное наложение аддитивной помехи, вследствие наличия бы-
товой сети вблизи точки измерений. Данный недостаток решатся 
наличием встроенного ФНЧ как у Байкал-7HR. В то же время даже 
при отсутствии ФНЧ данная задача решается методами цифровой 
фильтрации на этапе постобработки, благодаря тому, что такого 
рода помехи носят аддитивный характер. 

 
Список литературы 
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ДИНАМИКА СПЕКТРОВ КОМБИНАЦИОННОГО  
РАССЯЕНИЯ СВЕТА ПРИ ИЗМЕНЕНИИ ТЕМПЕРАТУРЫ 

 
Введение 
Наночастицы металлов обладают рядом свойств благодаря че-

му применятся в качестве компонента других веществ в таких об-
ластях как медицина, биология, электроника и многих других от-
раслях [1, 2]. Так суспензии на основе наночастиц оксидов метал-
лов могут быть использованы в качестве смазочных материалов с 
высокой теплопроводностью [3]. Подобный класс технических ве-
ществ должен обладать высокой структурной стабильностью в ши-
роком диапазоне температур. Также наночастицы металлов приме-
нятся и в исследовательской деятельности. Например, для получе-
ния гигантского комбинационного рассеяния, которое позволяет 
получать спектры большей интенсивности по сравнению с его тра-
диционной методикой [4,5]. Одним из методов исследования явля-
ется спектроскопия комбинационного рассеяния света. Поскольку 
спектроскопия комбинационного рассеяния является одним из 
мощнейших неразрушающих оптических способов исследования, 
она была выбрана как измерительный метод в данной работе. 

Экспериментальная часть 
Спектральные данные наночастиц серебра и железа были  

получены благодаря центру коллективного пользования ФИЦ КНЦ 
СО РАН на тройном спектрометре комбинационного рассеяния 
Horiba JoЬin Yvon Т64000 в геометрии обратного рассеяния. В ка-
честве источника возбуждения использовалось излучение твердо-
тельного лазера на длине волны 532 нм. Спектральное разрешение, 
при котором были получены спектры комбинационного рассеяния 
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(КР), 2 см–1 для всего исследуемого диапазона частот 180– 
3200 см–1. Измерения проводились при изменении температуры  
в диапазоне 223 – 328 К, с точностью стабилизации лучше, чем  
0,1 К. 

Результаты и обсуждение 
Для детального изучения данных к спектрам была применена 

операция деконволюции. Поскольку спектры простирается в широ-
ком диапазоне частот, то для упрощения их обработки данные всех 
спектров были разделены на несколько областей. Далее мы рас-
смотрим самые интенсивные и ярко выраженные области спектров. 

В спектрах наночастиц серебра наиболее точно можно разде-
лить контур на составляющие в диапазоне частот 2780-3200 см-1. 
Поэтому для этой области были построены зависимости положения 
линий КР от температуры (рис. 1). Как видно из рисунка 1, смеще-
ния линий малы и новые линии не появляются. Исчезновение ли-
нии на частоте 3019 см–1 при температуре 313 К происходит из-за 
уменьшения ее интенсивности, вследствие чего уровень шума 
начинает преобладать. Наиболее смещение претерпевает самая вы-
сокочастотная составляющая спектра. При повышении температу-
ры и сильного влияния шума определение ее положения имеет по-
грешность порядка 7 см–1. 

 

 
Рис. 1. Зависимость положения спектральных линий КР от тем-

пературы 
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Самые интенсивные линии (рис. 2) соответствуют колеба- 
ниям атома углерода [6-8]. Также в результате взаимодействия на-
ночастиц Ag с воздухом, углеродом и их соединениях [9, 10] воз-
никает большое количество дополнительных спектральных конту-
ров. Из-за сильного электростатического взаимодействия между 
наночастицами исследуемого вещества и обнаруженными элемен-
тами [10], линии, соответствующие колебаниям Ag, в чистом виде 
обнаружить не получается. 

 

 
Рис. 2. Спектры комбинационного рассеяния наночастиц Ag в частот-

ном диапазоне 950–1770 см–1 (справа от спектров указана температура); 
черный контур - экспериментальные спектры; зеленый - составные конту-
ра; красный расчетный спектр) 

 
Поскольку железо очень активно окисляется при контакте с 

атмосферой, то на наночастицах образуется оксид железа Fe2O3 в 
связи с чем в чистом виде получить колебаний, составляющих на-
ночастицы, весьма затруднительно. Так как атомы железа значи-
тельно тяжелее атомов кислорода, то можно сказать, что чем силь-
нее опускаемся в низкочастотную область, тем больше колебаний 
отвечает атомам Fe. Область частот от 350 см–1 и выше относится 
к колебаниям молекул О2. (рис. 3). 

Так колебания на частотах 218 и 501 см–1 относятся к колеба-
ниям типа A1g. Колебания, совершающиеся с частотами 146, 202, 
290, 404 и 622 см–1, относятся к колебаниям Eg симметрии.  
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Из-за высокого уровня шума по сравнению с интенсивностью спек-
тра комбинационного рассеяния в области около 100 см–1 не при 
всех температурах удается разрешить две отдельные линии, поэто-
му разделение контура в этом диапазоне частот не является досто-
верным. 

 

 
Рис. 3. Спектры комбинационного рассеяния наночастиц железа при 

различных температурах (указано в правой части спектра) разделенные на 
разные диапазоны: а) 60-260 см–1, б) 250-900 см–1 

 
Заключение 
В рамках заданного диапазона температур не было обна-

ружено значительных отклонений расположения максимумов спек-
тральных линий, что свидетельствует об отсутствии фазовых пере-
ходов в наночастицах серебра и железа, а также об их высокой 
структурной стабильности. Смещения спектральных линий имеют 
линейных характер в исследованном интервале температур. Ре-
зультаты, представленные в данной работе показывают возмож-
ность использования наночастиц Ag и Fe в технологических сус-
пензиях [11] применимых в климатических зонах, температура ко-
торых меняется в пределах от 223 К до 328 К. 
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С ОДИНОЧНЫМ ГАЗОВЫМ ПУЗЫРЬКОМ 
 

Введение 
Исследование распространения звука в жидкостях с газовыми 

включениями представляет значительный интерес для гидро-
акустики, ультразвуковой диагностики и биомедицинских техноло-
гий. Наличие пузырьков приводит к дисперсии, поглощению и не-
линейным эффектам, обусловленным резонансными колебаниями 
газовых включений. Резонансная частота зависит от радиуса пу-
зырька и свойств окружающей среды, а при высоких интенсивно-
стях звукового поля возможны генерация высших гармоник, кави-
тация и формирование ударных волн [1–3]. 

В настоящей работе представлены результаты численного  
моделирования распространения акустических волн в воде с оди-
ночным воздушным пузырьком. Расчеты выполнены в среде 
COMSOL Multiphysics с использованием уравнения Гельмголь- 
ца. Примененный подход реализован в рамках зарегистрирован-
ного программного модуля [6], что обеспечивает воспроизводи-
мость и достоверность полученных результатов. Эффективность 
COMSOL Multiphysics для решения подобных задач подтверждена 
в ряде исследований, включая моделирование акустических резо-
наторов, анализ поглощения звука и расчет пространственного рас-
пределения акустического давления [4, 5]. 

Результаты моделирования 
Моделирование проведено для прямоугольного резервуара 

размером 0.1 × 0.1 × 0.5 м с жесткими стенками, заполненного во-
дой при стандартных условиях (P = 1 атм, T = 293.15 K). Акустиче-
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ское возбуждение осуществляется двумя источниками на левой 
грани. Среда рассматривается как несжимаемая, а пузырек – как 
сферическое газовое включение. 

Численный анализ выполнен с использованием программного 
комплекса COMSOL Multiphysics, реализующего расчет на основе 
уравнения Гельмгольца: 

 
 

 
На Рисунке 1 отражено распределение акустического давления 

в расчетной области при частоте звука 8333,3 Гц. 
 

 
 
Рис. 1. Распределение полного акустического давления при частоте 

8333,3 Гц (длина волны вдвое превышает диаметр пузырька) 
 
При данной частоте длина волны в два больше размера пу-

зырька, что приводит к слабому рассеянию и выраженному ди-
фракционному огибанию. Основной волновой фронт сохраняется 
практически неизменным за пузырьком. Вблизи пузырька наблю-
даются незначительные локальные возмущения давления, вызван-
ные акустическим контрастом на границе раздела фаз. Домини-
рующей особенностью поля остается интерференционная кар- 
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тина стоячих волн, обусловленная отражениями от жестких стенок 
резервуара. 

Распределение полного акустического давления при частоте  
16 667 Гц показано рисунке 2  

 

 
Рис. 2. Распределение полного акустического давления при частоте  

16 667 Гц (длина волны равна диаметру пузырька) 
 
При сопоставимых размерах пузырька и длины волны рас-

сеяние становится существенным. Вокруг пузырька формируются 
четкие зоны повышенного и пониженного давления, свидетель-
ствующие об интенсивном взаимодействии волны с включением. 
Наблюдается сложная интерференционная структура, обусловлен-
ная наложением падающей, рассеянной и отраженных волн.  
В непосредственной близости от пузырька фиксируется локальное 
усиление акустического давления, характерное для условий, при-
ближающихся к резонансным. 

Выводы 
Проведенное моделирование подтвердило высокую эффек-

тивность программного комплекса COMSOL Multiphysics для  
исследования акустических процессов в неоднородных жидко- 
стях. Разработанный программный модуль [6] позволяет деталь- 
но визуализировать и анализировать взаимодействие звуковых 
волн с газовыми включениями. Показано, что влияние пузырька на 
акустическое поле существенно возрастает при приближении ча-
стоты возбуждения к резонансной, что проявляется в усилении рас-
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сеяния, локальном росте давления и усложнении интерференци-
онной картины. 

В дальнейшем планируется расширение модели на случай по-
лидисперсных систем и учет нелинейных эффектов в ультра-
звуковом диапазоне, включая кавитационные явления. Полу-
ченные результаты могут быть использованы для разработки  
методов управления акустическими свойствами жидких сред в тех-
нологических и биомедицинских приложениях. 
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ПОГЛОЩЕНИЕ ЗВУКА В СУСПЕНЗИЯХ  
В ДЛИННОВОЛНОВОМ ДИАПАЗОНЕ 

 
Введение 
Одним из процессов, интересным с точки зрения прак-

тических приложений и моделирования, является распространение 
звука в двухфазной среде. Суспензии, состоящие из жидкости и 
твердых частиц, относятся к двухфазным средам, обладающим раз-
нообразными и многофункциональными свойствами, позволя-
ющими решать с их помощью разные практические задачи. Ос-
новные теории о распространении акустических волн в суспен- 
зиях и эмульсиях, учитывающие различные физические эффекты, 
были созданы Lamb (1932), Рытовым и др. (1938), Urick (1948),  
Исаковичем (1948), Epstein-Carhart (1953), Allegra-Hawley (1972), 
Harker-Temple (1988), McClements (1992), Atkinson-Kytömaa (1992), 
Evans (1997), Temkin (1998), Hipp (2002), Valier-Brasier et al. (2015) 
и другими [1-13]. 

В неоднородных средах, к которым относятся суспензии и 
эмульсии, наблюдается качественный сдвиг в характере распро-
странения звука. При этом механические (упругие) и тепловые 
свойства компонентов суспензии являются определяющими па-
раметрами, влияющими на поглощение звука. Будем рассма-
тривать длинноволновой режим (когда длина волны намного пре-
вышает размеры частиц дисперсной фазы). В противоположность 
этому, очень большие частицы с отношением к длине звуковой 
волны просто отбрасывают звуковую волну в прямом направлении, 
которая сталкивается с падающей волной. Поглощение звука  
в суспензиях происходит через несколько основных механизмов, 
которые определяют, как акустические волны взаимодействуют с 
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частицами, находящимися в жидкости. При этом вклады каж- 
дого из механизмов в коэффициент затухания представляют собой 
аддитивную величину [2, 5, 6]: 

  (1) 
где α0 – коэффициент поглощения дисперсной среды (ДС), αterm – 
тепловые потери, αvisc – вязкие (вязко-инерционные) потери, αscat – 
потери на рассеяние. Тепловыми потерями в суспензиях можно 
пренебречь, так как их влияние на общий вклад в коэффициент за-
тухания незначителен и составляет всего лишь до 5%. Таким обра-
зом, рассмотрим потери на рассеивание и вязко-инерционный ме-
ханизм поглощения.  

1. Модели поглощения 
Модель Урика. Одна из ранних работ по исследованию по-

глощения звука в суспензиях была сделана Уриком. Он получил 
выражение для рассеяния акустической волны одной частицей, со-
вершающей колебания в вязкой среде, и затем выражение для ко-
эффициента затухания N частицами в единице объема [3]: некото-
рых преобразований дает следующее выражение: 

 
 2) 

где φ - объемная доля дисперсная фаза (ДФ). Параметры s и τ вы-
числяются по формулам: 

 
  

 

 

  
 

где r – радиус частиц, ω - циклическая частота, k – волновое число, 
ρ и ρ’ – плотность ДС и ДФ, η – вязкость. Первый из двух членов 
суммы в уравнении Урика (2) – это потери на рассеивание αscat, со-
здаваемые малыми относительно жесткими сферическими части-
цами. Второй член – это потери на трение αvisc, обусловленные вяз-
костью жидкости (вязко-инерционное поглощение).  

 

 
(3) 
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(4) 

Исследуя затухание ультразвуковых волн в водных суспензиях 
каолина и песка, он получил удовлетворительное согласие с экспе-
риментальными данными поглощения.  

ECAH теория. Более общая концепция, описывающая по-
глощение в суспензиях и эмульсиях, была получена Эпштейном, 
Кэрхартом, Аллегрой и Хоули и называется ECAH теорией (на-
звана по заглавным буква фамилий авторов). В более общем виде 
теория ECAH дает следующие уравнения для вклада трех механиз-
мов диссипативных потерь в общее затухание [6]: 

 

 
(5) 

 

 
(6) 

 

 

(7) 

где c – лапласова скорость, m и m’ – коэффициенты сжимаемости.  
2. Расчет и обсуждение результатов 
В качестве объекта для моделирования поглощения была вы-

брана реально существующая суспензия, состоящая из воды и ча-
стиц оксида кремния SiO2, имеющих сферическую форму. При 
этом диапазон частот составлял от 1 до 100 МГц, а радиус частиц 
от 100 до 2000 нм. Такие значения выбраны не случайно, так как 
при частоте 100 МГц и размере частиц 2000 нм, мы находимся на 
границе длинноволнового диапазона (при этом длина волны в 7,5 
раза больше, чем радиус). Результаты показали крайне низкое зна-
чение αscat, но большой диапазон изменений для всех размеров ча-
стиц дисперсной фазы (см. рис. 1 слева). Так, например, при радиу-
се частиц 500 нм потери на рассеяние менялись от 1.25·10-7  

Дб/см/МГц (1 МГц) до 4.46·10-4 Дб/см/МГц (100 МГц), при этом 
увеличение составило более 35000 раз. 
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Рис. 1. Коэффициенты рассеяния и вязко-инерционных потерь вод-

ной суспензии SiO2 при различных размерах частиц (объемная доля 5 %) 
 

Формула Урика (2) дает почти такие же результаты, что гово-
рит о том, что определяющим параметром для рассеяния является 
размер частиц и частота звуковой волны. Для суспензий, имеющих 
относительно твердые частицы, и в случае малых размеров потери 
на рассеяние будут иметь небольшие значения при любых значени-
ях плотности и сжимаемости. Далее был вычислен коэффициент 
вязко-инерционных потерь (см. рис 1. справа). Результаты показа-
ли, что значения αvisc имеют немонотонный характер. При размере 
частиц 100 и 250 нм вязко-инерционные потери сначала возраста-
ют, а затем убывают, причем для 100 нм это происходит при высо-
ких частотах, а для 250 нм – при низких частотах. Это обстоятель-
ство говорит о том, что до некоторого значения радиуса частиц 
вязко-инерционные потери возрастают и достигают максимального 
значения, а затем убывают. В данном случае для водной суспензии 
SiO2 максимальное значение находится между 250 нм и 500 нм. 
При возрастании размеров частиц происходит убывание αvisc по 
формуле (7). 

На рисунке 2 изображены графики, показывающие доли по-
глощения. Пустые столбы показывают долю вязкостного поглоще-
ния, а черные столбы – долю потерь на рассеяние. Видно, что при 
500 нм доля потерь на рассеяние минимальная и составляет при-
мерно 5% при максимальной частоте. При 2000 нм картина меняет-
ся кардинально, доля рассеяния составляет 5% уже на частоте 15.6 
МГц, а при частоте 100 МГц достигает 95%, что и следовало ожи-
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дать. На основе полученных данных была построена карта зон, по-
казывающая, при каких размерах и частотах преобладает тот или 
иной механизм поглощения (см. рис. 2. справа). Таким образом, 
было показано, как меняются механизмы поглощения при измене-
нии размеров частиц, а также частоты ультразвуковых волн. 

 

Рис. 2. Доля рассеяния и вязко-инерционных потерь водной суспен-
зии SiO2, а также карта зон поглощений [14] 

 
Заключение 
Представленная работа призвана ознакомить с основными 

теоретическими подходами к изучению акустического поглощения 
в суспензиях, а также с анализом работ по теоретическому и чис-
ленному определению основных характеристик явления погло-
щения и рассеяния. Таким образом, проведенные исследования по-
казали, что поглощение и рассеяние ультразвуковых волн в дис-
персных системах тесно связано с протекающими в них физиче-
скими процессами.  

 
Работа выполнена в рамках государственного задания СФУ  

(номер FSRZ‑2020-0012). 
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МИКРОВОЛНОВЫЕ СВОЙСТВА КОМПОЗИТА  
С ВЫСОКИМ СОДЕРЖАНИЕМ МИКРОЧАСТИЦ  

МАГНЕТИТА РАЗЛИЧНЫХ МАРОК 
 

Радиопоглощение на сверхвысоких частотах (СВЧ) различ-
ных частиц, обладающих магнитными свойствами, как в отдель-
ности, так и в сочетании с полимерами, проводящими и диэлек-
трическими нано- и микроструктурами, а также многослойных по-
крытий исследуется во многих работах. Так, например, микровол-
новые характеристики композиционных смесей, содержащих нано-
размерные порошки сегнетоэлектриков и ферритов, определены 
резонаторным методом на частотах 3–13 ГГц [1]. Композиты по-
казали высокие характеристики поглощения микроволн с большим 
содержанием микропорошка карбонильного железа, включая маг-
нитную проницаемость и тангенс угла потерь [2]. Особенный инте-
рес вызывают микрочастицы магнетита вследствие неплохой на-
магниченности насыщения и малой плотности. С точки зрения 
практического применения, композиты с большой концентрацией 
микропорошков, имеющих высокие магнитные потери на СВЧ, мо-
гут быть эффективно использованы для подавления высокочас-
тотного магнитного поля, в том числе для создания поглотителей 
электромагнитных волн, а также могут быть полезны для концен-
трации поля в антеннах, резонаторах. 

В настоящей работе разработаны и исследованы композиты  
с высоким, более 80 мас. % содержанием микрочастиц магнетита  
в силиконовом компаунде для создания материала с повышенным 
поглощением радиоволн СВЧ диапазона. Для этого определены 
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размеры и форма микрочастиц, созданы такие композиты, ис-
следованы коэффициенты отражения, прохождения и поглоще- 
ния, а также комплексные диэлектрическая и магнитная про-
ницаемости композитов в диапазоне частот 0,1-6 ГГц.  

На рис. 1. представлены частотные зависимости коэффи-
циентов поглощения, отражения и прохождения электромагнит-
ного излучения через созданный композит.  

 

 
Рис. 1. Зависимости коэффициентов поглощения, отражения и про-

хождения электромагнитного излучения через композит от частоты 
 
Наибольшее значение поглощения электромагнитного из-

лучения от ~ 10% до ~ 55 % на частотах 1-6 ГГц наблюдается для 
образцов, содержащих магнетит с содержанием 85,7 мас.% с диа-
метром частиц 63 мкм. Толщина композита 2 мм. Значения коэф-
фициентов отражения возрастают от ~ 5% до ~ 40% в исследуемом 
диапазоне частот.  

В заключение отметим, что, несмотря на большую концентра-
цию, 80-85,7% мас.% магнетита, образцы слабо проводят электри-
ческий ток и разработанная методика создания силиконовых ком-
позитов с большой концентрацией микропорошков магнетита поз-
воляет получить материалы с высокими электромагнитными пара-
метрами. 
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3D ПЕЧАТЬ ФАЗОВЫХ ОБЛАСТЕЙ Т-х-у ДИАГРАММ  
С НОНВАРИАНТНЫМИ РАВНОВЕСИЯМИ I-III КЛАССА,  

А ТАКЖЕ ИХ АНАЛОГОВ И ПРОТОТИПОВ 

 
Для понимания закономерностей в строении изобарных фазо-

вых диаграмм (ФД) тройных систем и использования их 3D ком-
пьютерных моделей в качестве рабочего инструмента при in silico 
дизайне гетерогенных материалов, необходимо рассматривать та-
кие диаграммы в совокупности близких им по топологии типов 
(семейств, аналогов), создавая для них разборные 3D-пазлы, состо-
ящие как из отдельных фазовых областей, так и из их кластеров 
(комплексных элементов, объединяющих однотипные фазовых об-
ласти) [1]. С этой целью используются программные продукты 
Microsoft Excel 2013 и AutoCAD 2020. В приложении [1] при-
ведены инструкции для получения бесплатной студенческой  
версии AutoCAD. 

Полную (без вырождения поверхностей в ребра и боковые 
грани тригональной призмы) ФД эвтектического типа Ееее, сос-
тоящую из 13 фазовых областей, можно представить в виде  
6-элементного пазла (рис. 1): однофазная гомогенная область лег-
коплавкого компонента C, двухфазная область L+C, трехфазная 
область A+B+C (без расплава), трехфазная область L+A+B (с рас-
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плавом), двухфазная область А+В и неразъемный кластер из ос-
тавшихся 8 областей без их разделения (13-5=8). Структуру такой 
ФД с различными сочетаниями одной тройной N (E, Q или P) и 
трех бинарных n (e или p) точек, обозначающих расплав (L или Ж) 
можно закодировать по количеству ее геометрических элементов 
(не включая фрагментов граней тригональной призмы) как ОПЛТ, 
где О - фазовые области, П - поверхности, Л – линии, Т - точки.  

 

 
Рис. 1. Фазовые области диаграммы Е(еее)=Eeee в виде 6-элементного 

пазла [1] (при отсутствии твердофазной растворимости области C и А+В 
совмещаются с ребром и гранью призмы; принадлежащие кластеру обла-
сти А. В, А+С, В+С тоже вырождаются) 

 
ФД Е(еее)=Eeee (три бинарные эвтектики "е" находятся по тем-

пературе выше тройной эвтектики "Е", а горизонтальный  
4-точечный комплекс относится к первому классу, где состав рас-
плава находится внутри симплекса из трех твердых фаз) кодирует-
ся как:13-28-54-25. У такой диаграммы из 13 фазовых областей и 28 
поверхностей существует много аналогов, отличающихся тройной 
N (E, Q или P) и бинарными точками n (e,е,е; е,е,p; е,p,p). ФД с 
тройными точками Q (две бинарные точки n - e или p - находятся 
выше нее, а одна – ниже) и P (одна точка находится выше нее, а две 
– ниже) относятся к диаграммам второго и третьего класс. При 
этом надо иметь в виду, что у диаграмм типа Q четырехточечный 
горизонтальный комплекс образует выпуклый четырехугольник, 
разделяемый двумя диагоналями на две пары симплексов (границы 
трехфазных областей), а четырехфазный комплекс диаграммы типа 



30 
 

P аналогичен четырехфазному комплексу диаграммы Е, но цен-
тральной точкой в нем является не расплав, а одна из твердых фаз. 

Более сложная ФД с бинарным инконгруэнтным соедине- 
нием АВ=R(δ) [1, с. 36-43] состоит из двадцати фазовых областей: 
А, В, С, R, А+C, А+R, В+С, В+R, C+R, A+C+R, B+C+R, L+A, L+B, 
L+C, L+R, L+A+C, L+A+R, L+B+C, L+B+R, L+C+R. По аналогии  
с диаграммой Ееее (рис. 1) ее можно закодировать как 
(ep)Q>E(ee)=epQ>Eee и присвоить ОПЛТ-код 20-47-84-37.  

Технические задания для прототипирования семейства та- 
ких диаграмм (n1n2)N1>N2(n3n4), где N1≡Q; N2≡E,Q,P; ni≡e,p, с ин-
конгруэнтным бинарным соединением δ(R)≡АВ разрабатывали 
студенты группы 13190. Диаграмма (ep)Q>E(ee)=epQ>Eee обсужда-
ется в тезисах [2], где в рисунке пазла с комплексным элементов 
допущена ошибка (комплексный элемент должен состоять из  
10-фазовых областей (рис. 2). В тезисах [3] этой ошибки нет. 

 

 
Рис. 2. Фазовые области диаграммы (ep)Q>E(ee)=epQ>Eee в виде  

10 индивидуальных фазовых областей и комплексного элемента из 10 
оставшихся фазовых областей [2] (в комплексном элементе не 9 фазовых 
областей, а 10) 

 
Кроме трехмерных пазлов из фазовых областей Т-х-у диа-

грамм (с кластеризованным элементом и без кластеризации одно-
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типных фазовых областей) наукоемкой продукцией студенческого 
бизнеса ИЕН БГУ, создаваемой при изучении учебной дисцип-
лины «химическая термодинамика», будут компьютерные 3D-
модели изобарных ФД тройных систем. Ниже дана характери- 
стика таких программных продуктов (цифровых двойников ФД), 
которая разработана в Секторе компьютерного конструирования 
материалов (СККМ ИФМ СО РАН, http://ipms.bscnet.ru/labs/ 
skkm.html. Каждая компьютерная 3D-модель представляет собой 
автономную программу с широкими возможностями визуализации 
как собственно пространственного геометрического объекта, цели-
ком или фрагментарно, в том числе на проекциях и изо- и политер-
мических разрезах, так и результатов расчетов кристаллизации лю-
бого произвольно заданного сплава, включая траектории всех фаз, 
материальные балансы на всех этапах кристаллизации, качествен-
ный и количественный состав формируемой микроструктуры. Воз-
можны кросс-валидация вертикальных и горизонтальным матери-
альных балансов и имитация спектров ДТА. Для стабильной рабо-
ты 3D-модели персональный компьютер должен удовлетворять 
следующим требованиям: операционная система Windows  
XP и выше; процессор с тактовой частой не менее 100 МГц; объем 
оперативной памяти 256 Мб и выше; объем свободного дискового 
пространства не менее 2.5 Мб. Для установки программы на ком-
пьютер достаточно скопировать ее на жесткий диск. Программа 
состоит из одного файла размером около 1 Мб. Вся графическая 
информация сохраняется на диске в сжатом формате JPEG, а таб-
личные данные - в формате MS Word. Для распространения мож- 
но использовать CD и DVD диски, usb-флеш карту, электронную 
почту. Для пользования программой необходимо заключить лицен-
зионное соглашение с разработчиками. При необходимости про-
грамма может быть доработана.  

Полученные программные продукты могут быть использо-
ваны при разработке и улучшении свойств материалов. Стои- 
мость зарубежных аналогов, которые содержат только инфор-
мацию о диаграмме (без расчета материальных балансов): от 100 до 
600 EUR за данные об одной диаграмме. 
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Такие программные продукты (3D компьютерные модели фа-
зовых диаграмм) могут снабжаться дополнительными опциями для 
уменьшения геометрических элементов ФД (при вырождении (сов-
падении с ребрами и гранями тригональной призмы) поверхно- 
стей на огранении областей с твердыми фазами. Д.А. Петров рас-
смотрел три варианта вырождения солидусных и сольвусных по-
верхностей в Т-х-у диаграмме с четырехфазным превращением 
L=ɑ+β+γ, состоящей из 28 поверхностей [4].  

Целесообразно рассмотреть такие же трансформации как  
для аналогичных по топологии диаграмм из 28 поверхностей, но 
теперь уже с четырехфазными превращениями L+a=ß+γ и L+a+ 
ß=γ, возникающими при заменах нонвариантных бинарных точек  
е на р и тройных Е на Q и P, так и для диаграмм других топологи-
ческих типов (например, с образованием одного или нескольких 
двойных и (или) тройных соединений с конгруэнтным и инконгру-
энтным плавлением). 

Совсем другой тип трансформаций возникает в том случае ес-
ли применять программу для построения и исследования какой-
либо определенной диаграммы к аналогичным манипуляциям с 
диаграммами других топологических типов. При таком подходе 
вырождению подвергаются и поверхности ликвидуса. Так как при 
создании алгоритмов визуализации диаграммы жесткость ее кон-
струкции обеспечивается определенным набором точек на конту-
рах поверхностей, которые остаются неизменными в процессе ра-
боты программы, то пользователь не имеет возможности добав-
лять, удалять точки, или изменять соединения между ними, но он 
может редактировать координаты этих точек, в том числе таким 
образом, чтобы при их совмещении происходило вырождение 
определенных линий и поверхностей. 

Изготовление пазлов разборных фазовых диаграмм тройных 
систем является важным элементом стратегии компьютерного кон-
струирования гетерогенных материалов [1], развивающим анало-
гичные тренды в xимии, биoxимии и фapмaцeвтикe [5]. 

 
Исследование выполнено в соответствии с госзаданием ФГБУН 

ИФМ СО РАН, проект 0270-2024-0013. 
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ПЕРЕКРЕСТНАЯ ПРОВЕРКА ВЕРТИКАЛЬНЫХ  
И ГОРИЗОНТАЛЬНЫХ МАТЕРИАЛЬНЫХ БАЛАНСОВ  

В ДИАГРАММЕ Li, K, Nd ||Cl 
 
В данном исследовании рассмотрена компьютерная модель 

изобарной фазовой диаграммы системы LiCl-NdCl3-KCl (рис. 1), 
построенная в программе Конструктор фазовых диаграмм, которая 
разработана в секторе компьютерного конструирования мате-
риалов.  

 

 
Рис. 1 3D-модель фазовой диаграммы LiCl-NdCl3-KCl, построенная 

по данным [1]: аксонометрия (а) и концентрационная проекция (б) 
 
Компьютерная модель позволяет воспроизводить простран-

ственную модель всей диаграммы и ее отдельных элементов и  
фазовых областей, рассматривать произвольные изо- и поли-
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термические сечения, расшифровывать их. Готовая 3D модель  
также дает возможность прослеживая историю кристаллизации и 
изменение фазового и конгломератного состава сплава.  

Еще одной важной возможностью разработанной 3D-модели 
фазовой диаграммы системы LiCl-NdCl3-KCl является возмож-
ность построения диаграмм материального баланса (ДМБ), ви-
зуализирующих количественных соотношений между фазовыми 
долями. Они строятся в виде горизонтальных (ГДМБ) (рис. 2б) или 
вертикальных (ВДМБ) (рис. 2в) диаграмм. 

 

 
Рис. 2. Политермический разрез S1(0.6, 0.4, 0) – S2(0, 0.4, 0.6)  

3D-модели LiCl-NdCl3-KCl (а), ГДМБ (б), ВДМБ для т. G (0.5, 0.4, 0.1) (в) 
 
Для произвольного политермического разреза z2(NdCl3)=0.4 

(рис. 2а) была построена ГДМБ, демонстрирующая изменение  
долей фаз в фазовых областях L+A+B, L+B, L+B+R2 при посто-
янной температуре в 4000С (рис. 2б). Для точки G (0.5, 0.4, 0.1) 
(рис. 2а), которая в [1] была обозначена как состав №27, была по-
строена ВДМБ, отражающая изменение долей фаз в фазовых об-
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ластях L+B, L+A+B при изменении температуры. На рис. 2в при 
постоянной температуре тройной эвтектики Т=376 0С отражено 
изменение долей фаз в процессе нонвариантного фазового перехо-
да по тройной эвтектической реакции L→A+B+R2 (из фазовой об-
ласти L+A+B  в область A+B+R2). 

 
Исследование выполнено в соответствии с госзаданием ФГБУН 

ИФМ СО РАН, проект № 0270-2024-0013. 
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МОДЕЛИ ДИАГРАММЫ Li,K,Nd||Cl 

 
Опубликованные данные по тройной системе с хлоридами 

неодима, лития и калия включают в себя экспериментальное иссле-
дование спектров дифференциально-термического анализа (ДТА) 
для 33 образцов [1] (рис. 1-2).  

 

 
Рис. 1. Составы образцов, исследованных методами рентгеновской 

дифракции (треугольник) и ДТА (заполненный круг) [1] 
 
В программах «Конструктор ФД» и «Редактор ФД», раз- 

работанных в секторе компьютерного конструирования материа-
лов, имеются функции расчета откликов для всех поверхностей, 
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пересекаемых вертикалью, восстановленной в любой точке кон-
центрационного треугольника. Эти данные позволяют имитировать 
спектры ДТА. Спектры ДТА, полученные в [1], показаны на рис. 2 
(15 из 33 образцов). Их называют эндотермами (фиксируются эндо-
термические эффекты при нагревании образца). 

 

 
Рис. 2. ДТА образцов разреза LiCl-K2NdCl5 (а), подсистемы LiCl-KCl-

K2NdCl5 (б), подсистемы LiCl-K2NdCl5-NdCl3 (в). Обозначение температур: 
B – квазибинарная эвтектика, L - ликвидус, T - тройная эвтектика, F – об-
разование K3NdCl6, S - вторичная кристаллизация [1] 

 
Составы образцов № 13, 18 и 22 (рис. 1, 2а) попадают на ква-

зибинарный разрез LiCl-K2NdCl5. На них не наблюдается расщеп-
ление пика при первой эндотерме, а температура солидуса равна 
450 0C (плавление квазибинарной эвтектики). 

Отличие эндотерм для подсистем LiCl-NdCl3-K2NdCl5 (рис. 2в) 
и LiCl-K2NdCl5-KCl (рис. 2б) заключается в том, что во второй из 
них фиксируется термоэффект образования соединения K3NdCl6, 
выклинивающегося на ликвидусе при 444-445 оС. 

На термограмме (рис. 3) представлен спектр ДТА (экзотерма), 
фиксируемый при равновесной кристаллизации расплава № 27 
(рис. 1). Она получена в программе Редактор фазовых диаграмм. 
Величины пиков соответствуют изменению массовой доле распла-
ва в соответствующем фазовой превращении. Нонвариантное пре-
вращение изображается узким вертикальным прямоугольником. 
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Рис. 3. Имитация ДТА для образца № 27 (рис. 1); показаны экзо-

термические эффекты, фиксируемые при охлаждения расплава) 
 
В данной работе проанализированы результаты дифферен-

циально-термического анализа, полученные в работе [1] и выпол-
нена имитация спектров ДТА в условиях равновесного охлаждения 
образцов. 

 
Исследование выполнено в соответствии с госзаданием ФГБУН 

ИФМ СО РАН, проект № 0270-2024-0013. 
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ОПТИМИЗАЦИЯ ГЕОМЕТРИИ ЭЛЕКТРОДОВ  
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Плазменная модификация поверхности – широко применяе-

мый метод активации полимерных материалов, позволяющий  
повысить поверхностную энергию, смачиваемость и адгезию без 
изменения объемных свойств. Ключевой проблемой является обес-
печение равномерности обработки, на которую существенно влияет 
геометрическая форма электродов, генерирующих плазменный 
разряд. 

Исследования проводились на экспериментальной плазмен-
ной установке. Изучались два варианта геометрической формы 
алюминиевых электродов, обозначенные как «А» и «Б». (рис 1.)  
 
 
 
 
 
 
 
 

 
Рис. 1. Схема выбранных для исследования геометрических форм 

алюминиевых электродов 
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Эксперименты проводились при напряжениях питания 20, 40  
и 60 В. Электрические параметры разряда (амплитуда напряже- 
ния, длительность импульсов) регистрировались с помощью циф-
рового осциллографа Hantek DSOS102P. Объектом исследования 
служила полиэтиленовая пленка толщиной 100 мкм. Время обра-
ботки всех образцов составляло 20 секунд. 

Для оценки эффективности модификации измерялись элек 
тростатические параметры: поверхностный потенциал (Vэ), на-
пряженность электрического поля (Е) и эффективная поверхно-
стная плотность заряда (σэфф) с помощью измерителя ИПЭП-1. 

Электроды формы «А» обеспечивали стабильный и равно-
мерный разряд с большей длиной канала (L до 75.8 мм) и меньшим 
количеством четких временных периодов (T1, T2) по сравнению  
с электродами «Б». (рис 2). 

 

   
20 В 40 В 60 В 

Рис. 2. Осциллограммы, снятые с алюминиевых электродов  
формы «А» 
 

Электроды формы «Б» характеризовались менее стабильным 
разрядом с большим количеством коротких импульсов (T1, T2, T3) 
и значительно меньшей длиной плазменного канала (L от 3.2 до 
34.25 мм). Это указывает на неравномерность распределения плаз-
мы (рис. 3). 

Результаты измерений значений электростатических пара-
метров поверхности ПП после плазменной обработки представ-
лены в таблице. 
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20 В 40 В 60 В 

Рис. 3. Осциллограммы, снятые с алюминиевых электродов  
формы «Б» 

 
Таблица  

 
Более высокие значения всех электростатических параме- 

тров для образцов, обработанных с использованием электродов 
«А», свидетельствуют о более интенсивной и однородной модифи-
кации поверхности ПЭ. 

Геометрическая форма электродов плазменного модифика-
тора оказывает существенное влияние на стабильность разряда, 
равномерность обработки и конечные свойства полимерного мате-
риала. 

Электроды геометрической формы «А» показали себя более 
эффективными по сравнению с электродами формы «Б», обеспечи-
вая устойчивый плазменный разряд и лучшее распределение элек-
трических параметров. 

На основании полученных результатов для установки в сопло 
плазменного модификатора поверхности рекомендованы элек-
троды геометрической формы «А». 

Форма электродов Vэ, кВ Е, кВ/м σэфф, мкКл/м² 

А 0.050 2.7 0.051 

Б 0.047 1.2 0.041 
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ПЛАЗМЕННАЯ МОДИФИКАЦИЯ ПОВЕРХНОСТИ  
ПОЛИПРОПИЛЕНОВЫХ ПЛЕНОК  
ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ 

 
В работе представлены результаты исследования микрорель- 

ефа поверхности полипропиленовых пленок, активированных в низ-
котемпературной плазме атмосферного давления. В результате акти-
вации происходит увеличение средних параметров шероховатости 
поверхности, что способствует созданию большего количества рель-
ефных образований для взаимного контакта и адгезии адгезива к по-
верхности, что приводит к повышению адгезионных свойств. 

Полипропилен (ПП) широко используется в машиностроении, 
строительстве, упаковочной и легкой промышленности благодаря 
своей химической инертности, высокой прочности на разрыв и ди-
электрическим свойствам. Однако низкая поверхностная энергия и 
слабая адгезия ограничивают его применение в композиционных  
материалах и покрытиях. Известно, что низкотемпературная плазма 
атмосферного давления является эффективным методом модифика-
ции поверхности ПП, изменяя микрорельеф и улучшая адгезионные 
свойства [1–5]. 

Целью данной работы является исследование влияния низко-
температурной плазмы атмосферного давления на микрорельеф по-
верхности ПП. В исследовании использовался ПП (ГОСТ 26996-86) 
толщиной 20 мкм. Размер образцов составлял 20×20 мм. Активация 
поверхности ПП проводилась на экспериментальной установке. 

В качестве плазмообразующих газов использовались аргон и 
смесь аргона с воздухом (50/50). Давление газа составляло 0,4 МПа. 
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Сопло плазмотрона располагалось перпендикулярно образцу на рас-
стоянии 10±1 мм. Активация поверхности образцов ПП проводилась в 
течение 15 секунд. 

Результаты измерения шероховатости поверхности исходных и 
активированных образцов представлены в таблице. 

 
Таблица 

Параметры шероховатости поверхности исходных  
и активированных образцов ПП 

Параметры шероховатости поверхности Rmax, 
мм Ra, мм Rq, 

мм 
Исходный образец ПП 77,1 14,3 18,7 

Образец, активированный в аргоне 199,4 41,5 31,9 
Образец, активированный  
в аргоне-воздухе (50/50) 133,1 27,7 33,9 

 
Анализ параметров шероховатости поверхности ПП показал, что 

плазменная активация существенно изменяет микрорельеф по срав-
нению с исходным образцом. Для активированных образцов ПП на-
блюдалось увеличение Rmax с 77,1 нм до 199,4 нм в аргоне и до  
133,1 нм в смеси аргона и воздуха (50/50), что свидетельствует о фор-
мировании более выраженных неровностей поверхности, способству-
ющих механическому сцеплению клея. Увеличение Ra на 27,2 нм и 
13,4 нм соответственно свидетельствует о более высокой средней ше-
роховатости. Параметр Rq, отражающий распределение неровностей, 
увеличился на 70% и 81%, что свидетельствует о появлении на по-
верхности ПП структурных образований, способствующих механиче-
скому сцеплению клея. 

Наиболее существенные изменения микрорельефа поверхности 
ПП наблюдались при использовании аргона в качестве плазмообразу-
ющего газа, что подтверждается наибольшими значениями всех пара-
метров шероховатости. Использование смеси аргона и воздуха (50/50) 
снижает экономические затраты на процесс активации при сохране-
нии достаточной шероховатости поверхности. 
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