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ABSTRACT 

The paper shows the possibility of continuous wavelet transform application for the analysis of pulse model signals. It 
has been found that wavelet analysis is capable of defining local characteristics of a signal and investigating any changes 
in the spectral distribution of a pulse signal. The wavelet spectra of pulse signals of healthy people and of people with 
functional disorders have been investigated. It has been shown that the shape of pulse signals of people with functional 
disorders is changing, which brings about change in the wavelet spectra. The paper describes a new wavelet-based 
detection method for physiologic pressure signal components.   
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1. INTRODUCTION 

 
The pressure signal of the radial artery provides information of different physiological processes going on in the 
organism. Obtaining this information requires detailed analysis of the pressure signal components. Thus, for temporal 
analysis of the heart activity, based on computing the lengths of the phases of the heart cycle and the analysis of their 
temporal correlations, correct determination of the informative points of a pressure signal is required. 
 
The fact is that pressure signals are non-stationary because its frequency structure and basic characteristics are time 
varying. That’s why a number of traditional methods of analysis (Fourier transform, autocorrelation analysis, time-
amplitude analysis) are not sufficiently effective for revealing different local characteristics and fluctuations of a pressure 
signal. 
 
Nowadays, a new method of wavelet transform is used for the analysis of non-stationary signals. Wavelet transform is 
applied to the detail analysis of non-stationary signals that have complicated structures like pressure waves. This is 
especially important for detecting the characteristics points in low amplitude segments; the definition of their positions 
has principle importance for the accuracy of the diagnosis. 
 
The aim of this work is the evaluation of the possibility and expediency of using the wavelet-analysis method for 
automating the process of detecting the disorders in the regulating systems of an organism and for signal components 
detection. 

2. CONTINUOUS WAVELET TRANSFORM (CWT) 

 
The wavelet transform decomposes a signal into a set of basic functions called wavelets. These are obtained from a 
single prototype wavelet, called a mother wavelet, by dilatations and by shifts.  
 
Wavelets are functions that satisfy certain mathematical requirements: this function must have zero mean and be 
localized in both time and frequency range.  
 
Different versions of wavelet functions are obtained from the basic wavelet by translation and dilation as follows: 
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where a<>0 is the scale and b – is the position (or time)  
 
A large value of the scale a stretches the basic wavelet function and makes the analysis of low-frequency components of 
the signal possible. A small value of a gives a contracted version of the basic wavelet and then makes the analysis of 
high-frequency components possible. Thus, the continuous wavelet transform is well suited for localizing frequency and 
for localizing time 
 
Wavelet transform has an infinite set of possible basic functions and their choice depends on the current task. Different 
mother wavelets give rise to different classes of wavelets; hence, the behavior of the ‘decomposed’ signal could be quite 
different. The mother wavelet should be chosen carefully, so that it exhibits good localization in both the frequency and 
spatial domains.  
 
The continuous wavelet transform is expressed as [1,2] 
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where the ( - ) indicates the complex conjugate and f(t)∈L2(R). 
 
Wavelet transform gives 3D representation of a signal as amplitude, frequency and time. Usually, for the wavelet 
transform representation, the filled contour plot is used; the x axis represents time, and the y axis indicates the wavelet 
scale, the colors indicate the values of the wavelet amplitudes. Besides, the y axis can be logarithmic. 

3. USING THIS WAVELET ANALYSIS OF MODEL SIGNALS  

 
The basic features of this method are shown in model pressure signals. Let's consider a sinusoid that has frequency of 1 
Hz, break point at t=5 s and jump at t=8 s (fig. 1a) and its wavelet spectrum (fig. 1b). Large values of wavelet 
coefficients correspond to the extremums of a signal; these are the dark areas in wavelet-spectrum (fig. 1b). Low values 
of wavelet coefficients (the light areas) correspond to the zeros of a signal. 
 
The vertical lines (the so called influence cones – dark conical patterns, which are wide for large durations (low wavelet 
pseudofrequencies) and become progressively narrower for smaller durations (high wavelet pseudofrequencies) in the 
wavelet spectrum (fig. 2b) correspond to the artifacts and break points. These cones uniformly converge to the t=5 s and 
t=8 s for high wavelet pseudofrequency. The sharper the feature is expressed, the more exactly it is allocated in the 
wavelet-spectrums and the higher the values of wavelet coefficients are. A horizontal stripe of “ellipses” in the wavelet-
spectrum, which corresponds to the alternation of the extremums and zeros in the signal, indicates to the wave period (1 
Hz frequency) in the sinusoid. Certain complications of the wavelet-spectrum on the edges are edge effect of a time-
limited signal. 
 
Wavelet transform is capable of revealing the changes in the spectral structure of a signal, which is shown in model 
pressure signals that consist of three harmonics (frequencies 1, 2, 13 Hz) which change their periods. In the wavelet 
spectrum of the model signal (fig. 1c) the horizontal stripes corresponding to the frequencies of the harmonics of the 
signal, change their position depending on the change of the period. For this signal, the Fourier spectrum would contain 
three harmonics without giving any information of their changes (evolution). 
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Fig.1. a – the sinusoid that has the frequency of 1 Hz, break point at t=5 s and jump at t=8 s; b –wavelet spectrum of the 

sinusoid; c – model pressure signal; d – its wavelet spectrum. 

 

Thus, the wavelet-analysis gives new opportunities to the detailed analysis of non-stationary signals, such as pressure 
signal, for which the application of Fourier transform is not very effective. It allows: 

- to detect the local features of pressure signals, i.e. characteristic points, artifacts and fluctuations, including 
those in the low amplitude segments. Large values of wavelet coefficients are close to the local features of a 
pressure signal; and small values are found in the places where the function is locally smooth. 

- to analyze the changes in the spectral structure of pressure signals and their characteristics that are not reflected 
in Fourier -spectrums.  

 

4. EXAMPLES OF CWT’S APPLICATION FOR PRESSURE SIGNAL 
 
Continuous wavelet transform has been used for the analysis of pressure signals of healthy people and people with 
functional disorders and its wavelet spectrums have been compared. The results of a continuous wavelet-transform of 
pressure signals of two patients with different states of health are shown in fig. 2. 
 
While comparing the results of wavelet transforms of two patients, we see that additional local features (frequencies 
from 6 to 23 Hz) in the wavelet spectrum of the patient with functional disorders are visible. But the wavelet spectrum of 
the pressure signal of the healthy patient does not show any local features in this range. 
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Fig.2. a – the pressure signal of healthy people; b – its wavelet-spectrum; c - the pressure signal of people with functional 

disorders; d - its wavelet-spectrum. 

 

For more detailed analysis of the low-frequency structure of a signal (in the range from 0,01 Hz and higher) we are 
analyzing long recordings of pulse waves (100 seconds). The results of the wavelet transforms of these pressure signals 
are shown in fig. 3. 
 
In the wavelet spectrum of the healthy patient, the stripe, corresponding to the basic frequency of the signal, has high 
variability (fig.3b). In the wavelet spectrum of the patient with functional disorders (fig. 3e), the stripe, corresponding to 
the basic frequency of the signal, is practically even, which indicates the decreasing variability of the rhythm of the heart 
beats. Additional local features appear in the wavelet spectrum of the patient with functional disorders (fig. 3e) in the 
frequency about 0,022 Hz. These periodic local features in the wavelet spectrum of the sick patient indicate an additional 
harmonic, which is absent in the wavelet spectrum of the healthy person (fig.3b). However, these local features, as well 
as the harmonic, disappear in t=50 s.  
 
A change in the frequency content of the signal in the range from 0,02 to 1 Hz can be observed in the global wavelet 
spectrum (fig.3c,f).  
 
Thus, the wavelet spectrums of patients with functional disorders differ from the wavelet spectrums of healthy patients. 
In the wavelet spectrums of people with functional disorders, the frequency structure in the low frequency range changes 
and additional local features in the range from 8 to 23 Hz appear.  

Proc. of SPIE Vol. 6936  693611-4



0033 - j-Sar:
e) 0335'

U,

1)

5000

3

0.033

2

0.113 0.385 1.315 4.42/
frequency, Hz

O.U33 0.1113

/
0.365 1305 441' frequency, Hz

 

 

 

 
Fig. 3. а – the pressure signal of healthy people (100 sec); b –its wavelet spectrum; c – its global wavelet spectrum; d - the 

pressure signal of people with functional disorders (100 s); e - its wavelet-spectrum; f – its global wavelet spectrum. 

 

The appearances of additional local features on the wavelet spectrum are connected with changes of pressure signal 
shape, which influences on the pressure signal components. Pressure signal components detection is important problem 
of evaluation of people’s functional condition. 

5. CONTINUOUS WAVELET TRANSFORM FOR DETECTION OF PRESSURE SIGNAL 
COMPONENTS  

For detecting pressure signal components, we suggest using a continuous wavelet transform for a discrete pressure signal 
[1]:  
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where a is scale coefficient, b is shift parameter, k is sampling increment, f(k) is a discrete pressure signal. We are using 
the Haar wavelet, which is an ortonormal wavelet with a compact support [3]. 
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The essence of this method is the wavelet transform of the signal under analysis (fig. 4a) and we get a picture of absolute 
values of the wavelet coefficients (wavelet spectrum) shown in fig. 4b where zero values of the wavelet coefficients are 
white marked and clearly seen. The next stage of the algorithm of signal components detection is the selection of the 
fixed scale (frequency) in the picture of the wavelet coefficients taking into account the characteristic scale that makes it 
possible to detect the required signal components. In fig. 4b the wavelet coefficients in the selected frequency are labeled 
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by line 1. The value of the frequency has been selected taking into account the minimization of the noise influence on the 
accuracy of the signal components detection. On the final stage of the signal components detection, we detect the zero 
values of the wavelet coefficients (the white areas of the wavelet coefficients) on line 1, which correspond to the model 
signal components, as it is shown in fig. 4b.  

 
Fig. 4. a - model pulse wave; it’s components (A,B,C,D); b - absolute wavelet coefficients; c - wavelet coefficients on selected scale 
(frequency). 

It is shown that this method is very simple to use for pressure signal components detection and can have many 
applications. 

6. CONCLUSIONS 
The analysis of model pulse signals has shown that wavelet analysis is capable of revealing any changes in the spectral 
distribution of a pressure signal and defining local characteristics of a signal such as artifacts and break points. This 
method opens new opportunities in detail analysis of arterial pressure signal. 
 
The analysis of the pressure signals of healthy people and people who have function disorders has shown that the local 
structure of the wavelet-spectrum of a pressure signal has definite changed in cases of disorders of an organism; the 
redistribution in the low frequency range of the wavelet spectrums take place. Also we represented novel wavelet-based 
method of pressure signal components detection. 
 
Wavelet transform applied for the analysis of pressure signals is a promising method of digital processing. This method 
can be used for revealing and formalizing the signs of functional disorders of an organism. Wavelet-based detection 
method can be used to detect the beat-to-beat of pressure signals and the pressure signal components. 
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