Фазовые равновесия на огранении системы Pb-Sn-Cd-Bi

В. И. Луцык, А. Э. Зеленая, Э. Р. Насрулин

Компьютерные модели T-х-у диаграммам Pb-Sn-Cd и Pb-Sn-Bi использованы для проверки достоверности экспериментальных данных по политермическим разрезам. Для расчета материальных балансов в двухфазных областях применяется пропорциональное разбиение длин изотерм, на которых располагаются сопряженные составы. На концентрационном поле нонвариантной четырехфазной реакции, завершающейся при недостатке расплава, выделены домены с избытками мелких эвтектических и крупных первичных кристаллов.

Ключевые слова: Фазовая диаграмма состояния, компьютерные модели T-х-у диаграмм Pb-Sn-Cd и Pb-Sn-Bi, конкуренция разнодисперсных кристаллов, сопряженные составы.

Computer models of T-x-y diagrams for Pb-Sn-Cd and Pb-Sn-Bi systems have been used to check the accuracy of experimental data on the isopleths. To calculate the material balances within the two-phase regions the proportional dividing of the isotherms length were made. Concentration field of invariant four-phase reaction with the lack of melt was interpreted as consisted of three fragments: with tiny eutectical crystals, with large primary crystals and with mixed type of crystals.

Keywords: Constitutional phase diagram, computer models of T-x-y diagrams Pb-Sn-Cd and Pb-Sn-Bi, competition of crystals with different dispersity, conjugate compositions.

Введение

Несмотря на поиск безсвинцовых припоев [1], остается актуальной задача исследования аналогичных материалов на основе свинца, обладающими пока лучшими физическими характеристиками и надежностью содержащих их электронных устройств. Компьютерные модели фазовых диаграмм (ФД) упрощают анализ изобильных и противоречивых данных по легкоплавким металлическим системам и позволяют прогнозировать их топологические варианты с разложением соединений и вырождением поверхностей сольвуса при низких температурах.

Так, ФД системы Pb-Sn-Cd-Bi изначально рассматривалась как эвтектическая [2-3]. Позже ее стали представлять как содержащую инконгруэтно плавящееся соединение Pb₃Bi [4-5]. Затем появились сообщения о его переменном составе [6]. В последние годы возникли противоречия и в трактовке ФД Pb-Sn-Bi и Pb-Sn-Cd [6-9]. Рассмотрим подробнее возможности компьютерной модели [10-11] при изучении ФД.

Модель фазовой диаграммы системы Cd-Sn-Pb

С 1907 по 1990 г. система трактовалась как эвтектическая [7]. После обнаружения фазы R(β), образующейся по перитектической реакции L+Sn и разлагающейся по эвтектоидной реакции на Cd и Sn при 130°C, дан новый вариант фазовой диаграммы [8]. В связи близким расположением точек диаграммы, анализ ее строения и разрезов затруднителен. Поэтому удобнее использовать модель схематичной диаграммы A(Cd)-B(Sn)-C(Pb), где точки разнесены по координатам и температурам при сохранении топологического строения (рис. 1). Диаграмма сформирована четырьмя поверхностями ликвидуса (q_A, q_B, q_C, q_R) (табл. 1) и содержит промежуточную фазу R, примыкающую к грани A(Cd)-B(Sn). Систехарактеризуется тремя нонвариантма ными превращениями: квазиперитектическим $L(U)+B \rightarrow R+C$, эвтектическим L(E)→A+C+R и с разложением фазы R в субсолидусе $R(E1) \rightarrow A+B+C$, которым соответствуют три горизонтальные плоскости температурах $T_{\rm U}$, $T_{\rm E}$ при T_{E1}, соответственно. Твердофазная и

Таблица 1

Контуры поверхностей диаграммы A(Cd)-B(Sn)-C(Pb)								
Символ	Контур	Символ	Контур	Символ	Контур			
$q_{\rm A}$	Ae_3Ee_1	q_{AC}^{r}	$A_{C}e_{1}EA_{E}$	s ^{r_1} BR	$R_B B_R B_U R_U$			
$q_{\rm B}$	BpUe ₂	q^{r}_{AR}	$A_R e_3 E A_E$	s ^r _{BC}	$B_{C}C_{B}C_{U}B_{U}$			
$q_{\rm C}$	Ce_2UEe_1	q^r_{BR}	$B_R B_U U p$	s ^r _{CR}	$R_U R_E C_E C_U$			
$q_{\rm R}$	pUEe ₃	q^r_{BC}	$UB_UB_Ce_2$	v ^r _{AB}	$\mathbf{B}_{\mathrm{E1}}\mathbf{A}_{\mathrm{E1}}\mathbf{A}_{\mathrm{E1}}^{\mathrm{0}}\mathbf{B}_{\mathrm{E1}}^{\mathrm{0}}$			
SB	$BB_{C}B_{U}B_{R}$	q^{r}_{CA}	$C_A e_1 E C_E$	v ^r _{AC}	$C_{E1}A_{E1}A_{E1}^{0}C_{E1}^{0}$			
s _C	$CC_AC_EC_UC_B$	q^{r}_{CB}	$C_B e_2 U C_U$	$v^{r_{-1}}AC$	$C_E C_{E1} A_{E1} A_E$			
SR	$R_A R_E R_U R_B$	q^{r}_{CR}	$C_U C_E E U$	v ^r _{AR}	$A_E R_E E 1 A_{E1}$			
V _{BA}	$B_{A}B_{E1}B_{E1}^{0}B_{A}^{0}$	q_{RA}^{r}	$R_A e_3 E R_E$	v_{BC}^{r}	$B_{E1}C_{E1}C_{E1}^{0}B_{E1}^{0}$			
V _{BC}	$B_{C}B_{U}B_{E1}B_{E1}^{0}B_{E1}^{0}B_{C}^{0}$	q^r_{RB}	pR_BR_UU	$v^{r_{-1}}BC$	$B_U C_U C_{E1} B_{E1}$			
V _{BR}	$B_R B_A B_{E1} B_U$	q_{RC}^{r}	$R_E R_U U E$	v_{BR}^{r}	$B_U R_U E 1 B_{E1}$			
VCA	$C_A C_E C_{E1} C_{E1}^0 C_A^0$	s ^r _{AB}	$A_B B_A B_{E1} A_{E1}$	v ^r _{CR}	$R_E C_E C_{E1} E1$			
V _{CB}	$C_{B}C_{U}C_{E1}C_{E1}^{0}C_{B}^{0}$	s ^r _{AC}	$A_{C}C_{A}C_{E}A_{E}$	v_{RC}^{r}	$R_U C_U C_{E1} E1$			
V _{CR}	$C_U C_E C_{E1}$	s ^r AR	A_BRE1A_{E1}	$h_{\rm E}$	$A_E C_E R_E$			
V _{RA}	$R_A R_E E 1 R$	s ^{r_1} AR	$A_R R_A R_E A_E$	h _{E1}	$A_{E1}B_{E1}C_{E1}$			
V _{RB}	R_BRE1R_U	s ^r _{BR}	$RB_AB_{E1}E1$	$h_{\rm U}$	$B_U C_U R_U U$			
V _{RC}	$R_E R_U E1$							

растворимость со стороны компонента A(Cd) вырождена на ребро призмы, поэтому в диаграмме присутствует только три солидуса s_B, s_C, s_R и девять сольвусов (v_{IJ}), примыкающих по три к компонентам B и C, и соединению R (табл. 1, рис. 1).

В качестве начальных данных при построении модели диаграммы задаются координаты точек на контуре поверхностей, а для визуализации поверхностей использовался алгоритм заполнения прямолинейного контура треугольной черепицей [12-13]. Полученная модель изучается произвольными горизонтальными и вертикальными разрезами и диаграммами материального баланса. Сечения схематичной диаграммы обладают большей наглядностью, т.к. позволяют избежать близкого расположения линий разреза.

Рис. 1. Схематичная диаграмма системы A(Cd)-B(Sn)-C(Pb)

Рис. 2. Горизонтальный разрез реальной [8] (а) и схематичной диаграмм (б)

Рис. 4. Вертикальный разрез III (рис. 1) реальной [9] (а) и схематичной диаграммы Cd(S1)-Sn(S2)-Pb(S3) (б)

В частности, на горизонтальном разрезе реальной диаграммы при T=180>T_U (рис. 2a) [8] фазовые области β , Sn+ β , Sn, L+Pb+Sn, Pb+Sn расположены близко друг к другу, что затрудняет их идентификацию, тогда как разрез схематичной диаграммы позволяет этого избежать (рис. 2б) (табл. 2).

Аналогичным образом могут быть расшифрованы и вертикальные разрезы изучаемой диаграммы (рис. 3).

Пытаясь исправить впечатление от «эвтектического» вида вертикальных разрезов [7], рассчитанных им термодинамически и противоречащих результатам [8], W.Zhou [9] приводит новые экспериментальные данные с фиксацией следов от пересечения плоскости нонвариантной реакции R=A+B+C (рис. 4), но затрудняется в отображении границ всех фазовых областей.

На горизонтальных (рис. 5а-б) и вертикальных (рис. 5в-г) диаграммах материального баланса можно получить количественные закономерности строения фазовой диаграммы. Штриховые вертикальные линии на горизонтальных материальных балансах соответствуют центрам масс G_1 и G_2 (рис. 5а-б), а штриховые горизонтальные линии на вертикальных материальных балансах отвечают температурам 155° и 135° (рис. 5в-г).

Таблица 2

Пересекаемые элементы горизонтального разреза при T=180>T_U (рис. 2a)

Поверхности			Фазовые области			
Символ	Разрез линии	Точки	Символ	Поверхности	Точки	
V _{BR}	$(B_R-B_A)(B_R-B_U)$	1-2	В	V _{BC} , V _{BA} , V _{BR} , S _B	1-2-3-4	
s_B	$(B_{R}-B_{U})(B_{C}-B_{U})$	2-3	С	$v_{CA}, v_{CB}, v_{CR}, s_{C}$	11-10-15-16	
V _{BC}	$(B_{C}-B_{U})(B_{C}-B_{C}^{0})$	3-4	A+C	s^{r}_{AC} , v^{r-1}_{AC} , v^{r}_{AC} , v_{CA}	16-15-17	
$s^{r_1}_{BR}$	$(B_R-B_U)(R_B-R_U)$	2-6	B+C	$s^{r}_{BC}, v^{r-1}_{BC}, v^{r}_{BC}, v_{CB}, v_{BC}$	4-3-10-11	
q^{r}_{BR}	$(B_R-B_U)(p-U)$	2-7	B+R	$s^{r}_{BR}, v^{r}_{BR}, s^{r-1}_{BR}, v_{RB}, v_{BR}$	1-2-6-5	
q^{r}_{BC}	$(B_{C}-B_{U})(U-e_{2})$	3-9	R	v_{RC} , v_{RA} , v_{RB} , s_R	5-6-8	
s ^r _{BC}	$(B_{C}-B_{U})(C_{B}-C_{U})$	3-10	L+B+C	s^{r}_{BC} , q^{r}_{CB} , q^{r}_{BC} , h_{BCU}	3-9-10	
V _{RB}	$(R_B-R)(R_B-R_U)$	5-6	L+A+C	s^{r}_{AC} , q^{r}_{AC} , q^{r}_{CA} , h_{ACE}	14-15-17	
q^{r}_{RB}	$(R_B-R_U)(p-U)$	6-7	L+B+R	$s^{r_{-}l}{}_{BR}$, $q^{r}{}_{RB}$, $q^{r}{}_{BR}$, h_{BRU}	2-6-7	
s _R	$(R_B-R_U)(R_B-R_A)$	6-8	L+R	q_{RA}^{r} , q_{RC}^{r} , q_{RB}^{r} , s_{R} , q_{R}	8-6-7-12	
$q_{\rm B}$	$(p-U)(U-e_2)$	7-9	L+C	q_{CA}^{r} , q_{CR}^{r} , q_{CB}^{r} , s_{C} , q_{C}	9-10-15-14	
q_R	$(p-U)(p-e_3)$	7-12	L+B	$q_{BR}^{r}, q_{BC}^{r}, s_{B}, q_{B}$	2-3-9-7	
q^{r}_{CB}	$(U-e_2)(C_B-C_U)$	9-10	L+A	$q_{AR}^{r}, q_{AC}^{r}, q_{A}$	13-14-17	
$q_{\rm C}$	$(U-e_2)(E-e_1)$	9-14				
V _{CB}	$(C_B-C_U)(C_B-C_B^0)$	10-11				
$q_{\rm A}$	$(R_{AB}-R_{AB}^{0})(A-e_{3})$	13-14				
q^{r}_{CA}	$(A-e_3)(C_A-C_E)$	14-15				
s _C	$(C_B-C_U)(C_A-C_E)$	10-15				
q^{r}_{AC}	$(A-e_3)(A_C-A_E)$	14-17				
VCA	$(C_A - C_E)(C_A - C_A^0)$	15-16				
s ^r _{AC}	$(C_A - C_E)(A_C - A_E)$	15-17				

Рис. 5. Диаграммы материального баланса при 155° (а), 135° (б) и для сплавов G₁ (в), G₂ (г) разреза MN (рис. 1) (A≡Cd, B≡Sn, C≡Pb)

Модель фазовой диаграммы системы Pb-Sn-Bi

Несмотря на имевшиеся сведения о термодинамической неустойчивости и разложении при -46° инконгруэнтно плавящегося соединения Pb_mBi_n, при построении фазовой диаграммы Pb-Sn-Bi [6] оно принято стабильным и при низких температурах, тогда как тройное соединение разлагается. Диаграмма Pb(A)-Sn(B)-Bi(C) (рис. 6) содержит бинарное R1 и тройное R2 инконгруэнтно плавящиеся соединения и характеризуется пятью нонвариантными равновесиями: вумя квазиперитектическими $L(Q_1)+A \rightarrow R1+B$ и $L(Q_2)+R1 \rightarrow$ R2+B, перитектическим $L(P)+R1+C \rightarrow R2$,

Таблица 3

Символ	Контур	Символ	Контур	Символ	Контур
QA	$Ae_{AB}O1p_{AB1}$	V _{R2B}	$R2_{\Omega 2}R2_{F}E0$	S ^r _{R1R2}	$R2_{\Omega 2}R1_{\Omega 2}R1_{P}R2_{P}$
q _B	Be _{AB} Q1Q2Ee _{BC}	V _{R2C}	$R2_{E}R2_{P}E0$	s ^r _{BC}	$\tilde{C}_B B_C B_E C_E$
q _C	$Ce_{BC}EPe_{CR1}$	q ^r _{AB}	$A_{B}e_{AB}Q1A_{O1}$	s ^r _{CR2}	$C_E R 2_E R 2_P C_P$
q_{R1}	p _{AR1} Q1Q2Pe _{CR1}	q^r_{BA}	$e_{AB}B_AB_{Q1}Q1$	v_{AB}^{r}	$A_{Q1}B_{Q1}B^{0}_{Q1}A^{0}_{Q1}$
q_{R2}	Q2EP	q_{AR1}^{r}	$A_{R1}p_{AR1}Q1A_{Q1}$	v_{BR1}^{r}	$B_{Q1}R1_{Q1}R1_{Q1}^{0}B_{Q1}^{0}$
SA	$AA_{B}A_{Q1}A_{R1}$	q_{R1A}^{r}	$R1_Ap_{AR1}Q1R1_{Q1}$	v ^r AR1	$A_{Q1}R1_{Q1}R1_{Q1}^{0}A_{Q1}^{0}$
s _B	$BB_AB_{Q1}B_{Q2}B_EB_C$	q^{r}_{BR1}	$B_{Q1}B_{Q2}Q2Q1$	$v^{r_{-1}}_{R1B}$	$\mathbf{B}_{\mathrm{Q2}}\mathbf{R}1_{\mathrm{Q2}}\mathbf{R}1_{\mathrm{E0}}\mathbf{B}_{\mathrm{E0}}$
s _C	$CC_BC_EC_PC_{R1}$	q^{r}_{BR2}	$B_{Q2}B_EEQ2$	v ^r _{BR2}	$B_{Q2}R2_{Q2}E0B_{E0}$
s _{R1}	$R1_AR1_{Q1}R1_{Q2}R1_PR1_C$	q^{r}_{BC}	$B_E B_C e_{BC} E$	v ^r _{R1R2}	$R1_{Q2}R2_{Q2}E0R1_{E0}$
s _{R2}	$R2_{Q2}R2_{P}R2_{E}$	q^{r}_{CB}	$e_{BC}EC_{E}C_{B}$	v ^r _{R2B}	$B_E R 2_E E 0 B_{E0}$
V _{AB}	$A_B A_{Q1} A^0_{Q1} A^0_{B}$	q^{r}_{CR2}	$C_E EPC_P$	$v^{r_l}_{BC}$	$B_E C_E C_{E0} B_{E0}$
V _{AR1}	$A_{R1}A_{Q1}A_{Q1}^{0}A_{R1}^{0}$	q^{r}_{CR1}	$C_P Pe_{CR1} C_{R1}$	v ^r _{CR2}	$R2_EC_EC_{E0}E0$
v_{BA}	$\mathbf{B}_{\mathbf{A}}\mathbf{B}_{\mathbf{Q}1}\mathbf{B}^{0}_{\mathbf{Q}1}\mathbf{B}^{0}_{\mathbf{A}}$	$\mathbf{q}^{\mathrm{r}}_{\mathrm{R1B}}$	$R1_{Q1}R1_{Q2}Q2Q1$	$v^{r_l}_{CR1}$	$C_P R 1_P R 1_{E0} C_{E0}$
V _{BR1}	$B_{Q1}B_{Q2}B_{E0}B^{0}_{\ E0}B^{0}_{\ Q1}$	q_{R1R2}^{r}	$R1_{Q2}R1_{P}PQ2$	v_{R2R1}^{r}	$R1_PR2_PE0R1_{E0}$
V _{BR2}	$\mathbf{B}_{\mathbf{Q2}}\mathbf{B}_{\mathbf{E}}\mathbf{B}_{\mathbf{E0}}$	q_{R1C}^{r}	$R1_PR1_Ce_{CR1}P$	v ^r _{R2C}	$C_P R 2_P E O C_{E0}$
V _{BC}	$\mathbf{B}_{\mathbf{E}}\mathbf{B}_{\mathbf{C}}\mathbf{B}^{0}_{\mathbf{C}}\mathbf{B}^{0}_{\mathbf{E}0}\mathbf{B}_{\mathbf{E}0}$	$\mathbf{q}^{\mathrm{r}}_{\mathrm{R2R1}}$	$Q2PR2_PR2_{Q2}$	v_{R1B}^{r}	$R1_{E0}B_{E0}B_{E0}^{0}R1_{E0}^{0}$
V _{CB}	$C_B C_E C_{E0} C_{E0}^0 C_{B}^0$	q^{r}_{R2B}	$Q2ER2_ER2_{Q2}$	v ^r _{BC}	$C_{E0}B_{E0}B_{0}^{0}E_{0}C_{E0}^{0}$
V _{CR1}	$C_{R1}C_PC_{E0}C_{E0}^0C_{R1}^0$	q^{r}_{R2C}	$EPR2_PR2_E$	v ^r _{CR1}	$R1_{E0}C_{E0}C_{E0}^{0}R1_{E0}^{0}$
V _{CR2}	$C_P C_E C_{E0}$	s ^r _{AB}	$A_B B_A B_{Q1} A_{Q1}$	h_{Q1}	$A_{Q1}B_{Q1}R1_{Q1}Q1$
V _{R1B}	$R1_{Q1}R1_{Q2}R1_{E0}R1_{E0}^{0}R1_{Q1}^{0}$	s ^r AR1	$A_{Q1}R1_{Q1}R1_AA_{R1}$	h _{Q2}	$B_{Q2}R1_{Q2}R2_2Q2$
V _{R1A}	$R1_{Q1}R1_{A}R1_{A}^{0}R1_{Q1}^{0}$	s ^r _{BR1}	$B_{Q1}R1_{Q1}R1_{Q2}B_{Q2}$	$h_{\rm E}$	$C_E B_E R 2_E$
V _{R1C}	$R1_{C}R1_{P}R1_{E0}R1_{E0}^{0}R1_{C}^{0}$	s ^r _{CR1}	$C_P R 1_P R 1_C C_{R1}$	$h_{\rm P}$	$C_PR1_PPR2_P$
V _{R1R2}	$R1_{Q2}R1_{P}R1_{E0}$	s ^r _{BR2}	$B_{Q2}B_ER2_ER2_{Q2}$	h_{E0}	$B_{E0}R1_{E0}C_{E0}$
V _{R2R1}	$R2_{O2}R2_{P}E0$				

Контуры поверхностей диаграммы Pb(A)-Sn(B)-Bi(C)

эвтектическим L(E) \rightarrow R2+B+C и с разложением соединения R2 в субсолидусе R2 \rightarrow R1+B+C. ФД сформирована пятью поверхностями ликвидуса (q_A, q_B, q_C, q_{R1}, q_{R2}) и пятью сопряженными с ними поверхностями солидуса (s_A, s_B, s_C, s_{R1}, s_{R2}). К солидусу s_A примыкает две поверхности сольвуса (v_{AB}, v_{AR1}), к солидуса s_B и s_{R1} – по четыре сольвуса (v_{BA}, v_{BR1}, v_{BR2}, v_{BC}) и (v_{R1B}, v_{R1A}, v_{R1C}, v_{R1R2}), к s_C и s_{R2} – по три сольвуса (v_{CB}, v_{CR1}, v_{CR2}) и (v_{R2R1}, v_{R2B}, v_{R2C}) соответственно (табл. 3).

Рис. 6. ХҮ проекция схематичной диаграммы диаграммы Pb(A)-Sn(B)-Bi(C)

Для полученной модели так же воспроизведены горизонтальные и вертикальные разрезы, построены диаграммы материального баланса и проведено сопоставле-ние с экспериментальными данными (рис. 7).

Расчет составов сопряженных фаз и путей кристаллизации в двухфазных областях T-х-у диаграмм

При расчете сопряженных составов в Тх-у диаграммах предполагается, что концы конод проходят через точки, разбивающие линии одного уровня на одинаковое число фрагментов [14]. Уравнение каждой изотермы получается при совместном решении уравнения соответствующей поверхности и горизонтальной плоскости, при этом если уравнение поверхности задается относительно локально выбранных симплексов (как в случае фазовых диаграмм с разрывами растворимости) то оно предварительно переводится в координаты глобального симплекса ABC. Затем уравнение линии одного уровня переводится в декартовы координаты и представляется как функция y=f(x), к которой затем применяется формула расчета длины плоской кривой. После

Рис. 7. Горизонтальный разрез схематичной (а) и реальной (б) [5] диаграммы при 150°, вертикальный разрез MN (в) и диаграммы горизонтального материального баланса при 110° (г) и 85° (д)

нахождения длины изотермы находятся сопряженные составы (x, y) решением системы уравнений:

$$\begin{cases} y = f(x) \\ s = s(x_0, y_0, x, y) = \frac{S}{N} \cdot i \end{cases}$$

где N - число точек, разбивающих кривую, і - текущий номер участка кривой, x_{0} , y_{0} - нижний предел интеграла, с которого начинается разбиение (рис. 8а). Полученные в результате разбиения обеих изотерм на одинаковое количество участков пары сопряженных точек соединяются конодами.

На основе метода расчета сопряженных составов разработан алгоритм нахождения составов сосуществующих фаз для произ-

вольно заданной точки $k(z_1, z_2, z_3)$ при любом значении температуры в двухфазной области. Для начала определяются температуры на поверхностях системы, ограничивающих двухфазную область, подстановкой координат точки k в уравнения поверхностей. Затем в этом интервале температур ΔT с некоторым шагом рассчитываются сопряженные составы расплава (x₁,y₁) и кристаллов (x₂,y₂), решением уравнений:

$$\begin{cases} y_1 = f_1(x_1) \\ y_2 = f_2(x_2) \\ \frac{(x_k - x_1)}{(x_2 - x_1)} = \frac{(y_k - y_1)}{(y_2 - y_1)}, \\ \frac{s_1}{S_1} = \frac{s_2}{S_2} \end{cases}$$

А N=1 C A C Рис. 8. Деление изотермы на участки равной длины (а) и расчет коноды для заданной точки в двухфазной области (б)

Рис. 9. Концентрационное поле A_QTQ (a); материальные балансы на изоплетах A_QF при $T_Q+\delta$ (б) и $T_Q-\delta$ (в) и TS при $T_Q+\delta$ (г) и $T_Q-\delta$ (д); «и» - избыточные кристаллы после реакции $L+A^Q=B^Q+R^Q$

где первые два уравнения – уравнения изотерм поверхностей, третье – уравнение прямой, проходящей через заданную точку k и две сопряженные ей точки (x_1,y_1) и (x_2,y_2) , а четвертое уравнение – соотношение длины участка s_1 или s_2 к общей длине изотермы S_1 или S_2 (рис. 8б). Когда операция вычисления сопряженных составов будет выполнена во всем промежутке температур для данной точки k, получается две пространственные кривые, характеризующих изменение состава расплава и составов сосуществующих с расплавом кристаллов.

Вид путей кристаллизации определяется параметрами поверхностей, ограничивающих двухфазные области.

Анализ микроструктур

Компьютерная модель фазовой диаграммы упрощает решение задач дизайна микроструктур. Поле A_Q TFS разбивается линиями A_Q K и TK на фрагменты TFK, A_Q TK и A_Q SK (рис. 9а). В верхнем фрагменте - TFK - в микроструктуру входит матрица $M=R^Q+B^Q+B^e$ и кристаллы A^e , в нижнем фрагменте A_Q SK – матрица M и кристаллы A^1 . Микроструктура промежуточного фрагмента АоТК включает оба типа кристаллов А: М+А¹+А^e. С помощью горизонтальных материальных балансов на изоплетах A₀F (рис. 9, б, в) и TS (рис. 9, г, д) (до и реакции $L+A^Q=B^Q+R^Q$) после можно наблюдать, как конкурируют первичные и эвтектические кристаллы. Если обозначить через «и» избыточные кристаллы после реакции L+A^Q=B^Q+R^Q, тогда прямая ТК разбивает изоплету АоF на две части: Ао(Т-К) с микроструктурой А^{и1}+А^{ие}+В^Q+В^e+R^Q и (T-K)F с микроструктурой $A^{\mu e}+B^{Q}+B^{e}+R^{Q}$, что подтверждается горизонтальным материальным балансом при Т₀-б (рис. 9, в). Изоплета TS также делится на части прямой A_0K : $T(A_0-K)$ с микроструктурой $A^{\mu l}$ + $A^{\mu e}+B^{Q}+B^{e}+R^{Q}$ и (A₀-K)S с микроструктурой $A^{\mu 1}+B^{Q}+B^{e}+R^{Q}$ (см. горизонтальный материальный баланс при То-б, рис. 9, д). Таким образом, точка К на отрезке FS (исключая его концы F и S) разбивает прямыми АоК и ТК концентрационное поле A₀TFS на три части: A₀KS, A₀KT и TKF (рис. 9, а).

Выводы

Компьютерные модели фазовых диаграмм (ФД) дают возможность наглядно представить геометрическое строение ФД, а также реализовать различные варианты их разрезов. Несмотря на то, что с 1830 г. было известно о плавлении эвтектики РЬ-Sn-Bi при 98°C, а в более сложных системах Cd-Pb-Sn-Bi и Cd-Pb-Sn-Bi-In давно были обнаружены эвтектики, плавящиеся при 70° и 47°C, графика соответствующих ФД (экспериментальная и рассчитанная термодинамическими методами) неоднозначна и противоречива. Использование компьютерных моделей ФД дает возможность проанализировать эти противоречия и позволяют прогнозировать их топологические варианты с разложением соединений и вырождением поверхностей сольвуса при низких температурах, что соответствует третьему закону термодинамики.

Литература

1. Atlas of Phase Diagrams for Lead-Free Soldering compiled by A. Dinsdale, A. Watson, et al. COST 531, ESF. Brno, Czech Republic: Vydavatelstvi KNIHAR, 2008, Vol. 1. 289 p.

2. Parravano N., Sirovich G. Le leghe quaternarie di piombo – cadmio – bismuto – stagno. Gazz. Chimica Italiana, 1912, v. 42, №6, p.630-716.

3. Аносов В.Я., Погодин С.А. Основные начала физико-химического анализа. Москва-Ленинград: Изд-во Академии наук, 1947, 876 с.

4. Захаров А. М. Диаграммы состояний четверных систем. М.: Металлургия, 1964, 140с.

5. Захаров А. М., Каргин Г. А., Жаров Р. Б. Фазовые равновесия в сплавах систем Pb-Bi-Sn, Pb-Bi-Cd и

Pb-Bi-Cd-Sn, содержащих 40 масс % Ві. Неорганические материалы, 1987, т. 23, №3, с. 420-423.

6. Osamura K. The Bi-Pb-Sn (Bismuth-Lead-Tin) System. Bulletin of Alloy Phase Diagrams, 1998, v. 9, №3, p. 274-281.

7. Zhou W., Song L., Wu F., Zhao M. Calculation of thermodynamic properties and phase diagrams of the Cd-Pb-Sn ternary system. Journal of the Less-Common Metals, 1990, v. 158, №1, p. 81-88.

8. Osamura K., Du Z. The Cd-Pb-Sn System (Cadmium-Lead-Tin). Journal of Phase Equilibria, 1993, v. 14, №2, p. 206-213.

9. Zhou W., Shen Z. Determination and calculation of the Cd-Pb-Sn ternary phase diagram. Journal of Alloys and Compounds, 1994, v. 215, №1, p. 55-61.

10. Луцык В.И., Зеленая А.Э., Зырянов А.М. Компьютерное моделирование тройных изобарных систем с расслоением расплава Au-Rh. Перспективные материалы, 2009, №7, с. 194-198.

11. Lutsyk V.I., Zelenaya A.E., Zyryanov A.M. Specific Features of the Crystallization of Melts in Systems with a Transition from Syntectic Equilibrium to Monotectic Equilibrium. Crystallography Reports, 2009, v. 54, №7, p. 1300–1307.

12. Насрулин Э.Р., Луцык В.И. Редактор тройных фазовых диаграмм, состоящих из произвольного числа поверхностей с выпуклым прямолинейным контуром. Свидетельство об официальной регистрации программы для ЭВМ № 50200601354. М.: ВНТИЦ, 2006.

13. Насрулин Э.Р., Луцык В.И., Воробьева В.П. Визуализация путей кристаллизации и расчет материального баланса в тройных фазовых диаграммах. Свидетельство об официальной регистрации программы для ЭВМ № 50200601390. М.: ВНТИЦ, 2006.

14. Луцык В.И., Зеленая А.Э.. Расчет конод Т-х-у диаграмм по уравнениям изотерм на границах двухфазной области. Журнал физической химии, 2003, т. 77, №3, с.407-412.

Луцык Василий Иванович - Бурятский научный центр Сибирского отделения РАН, Отдел физических проблем, доктор химических наук, профессор, заведующий сектором. Специалист в области материаловедения, физико-химического анализа. E-mail: <u>vluts@ipms.bscnet.ru</u>

Зеленая Анна Эдуардовна - Бурятский научный центр Сибирского отделения РАН, Отдел физических проблем, кандидат физико-математических наук, старший научный сотрудник. Специалист в области физико-химического анализа, математического моделирования. Е -mail: zel_ann@mail.ru

Насрулин Эдуард Рафаэльевич - Бурятский научный центр Сибирского отделения РАН, Отдел физических проблем, научный сотрудник. Специалист в области компьютерного конструирования, программного приложения. E-mail: nased@bk.ru.