## МОДЕРНИЗАЦИЯ МЕТОДОВ ПОИСКА ЛЕГКОПЛАВКИХ СОСТАВОВ В МНОГО-КОМПОНЕНТНЫХ СОЛЕВЫХ СИСТЕМАХ

#### Отдел физических проблем, Бурятский научный центр Сибирского отделения Российской академии наук, Улан-Удэ

Модифицирован метод конод для определения нонвариантных составов при помощи матричных преобразований параметров T-x-y-z диаграмм на одномерных сечениях концентрационного тетраэдра, не принадлежащих одной плоскости. Произведена коррекция ошибочной интерпретации графики на экспериментальных разрезах системы Li||F,Cl,VO<sub>3</sub>,CrO<sub>4</sub>. Рассмотрены два варианта триангуляции системы Li,K,Ba||F,WO<sub>4</sub> с 4-мя соединениями (LiBaF<sub>3</sub>, LiKWO<sub>4</sub>, K<sub>2</sub>Ba(WO<sub>4</sub>)<sub>2</sub>, K<sub>3</sub>FWO<sub>4</sub>) и двумя парами альтернативных внутренних диагоналей, подтверждаемые топологическими закономерностями.

## Введение

При определении температурноконцентрационных параметров многокомпонентных солевых смесей для электролитического рафинирования тяжелых металлов в ионных расплавах [1] применяют метод конод Д.А.Петрова [2] или его разновидность [3-4], называемую проекционнотермографическим методом (ПТГМ). При этом возможны проблемы с расшифровкой двумерных вертикальных разрезов Т-х-у-z диаграмм [5]. Кроме того, ПТГМ разработан только для такого специфического расположения трех политермических разрезов (изоплет), когда основания первых двух разрезов принадлежат одной плоскости. Если усовершенствовать метод [3] матричными преобразованиями [6] координат конодных вершин, появится значительно больше возможностей в рациональном подборе составов для экспериментального исследования. В тех случаях, когда Т-х-у-z диаграммы выделяют после триангуляции концентрационных призм четверных взаимных систем, известные затруднения при образовании непрерывных рядов твердых растворов, «внутренних соединений» и скрытых секущих (внутренних диагоналей) [7] удается преодолеть использованием соотношений между числом образующих топологических элементов, концентрационный комплекс. Для усовершенствования методов исследования многокомпонентных систем и проверки экспериментальной графики на разрезах их фазовых диаграмм разрабатываются компьютерные модели Т-х-у-г диаграмм [8].

# Модель системы LiF-LiCl-LiVO<sub>3</sub>-Li<sub>2</sub>CrO<sub>4</sub> и метод планарных конод

Перемещением образующих геометрических элементов по направляющим [8] заданы 4 нелинейчатые гиперповерхности ликвидуса Q<sub>I</sub> (I≡LiF, LiCl, LiVO<sub>3</sub>, Li<sub>2</sub>CrO<sub>4</sub>), гиперплоскость Н<sub>г</sub> при температуре четверной эвтектики и 24 линейчатые гиперповерхности (12 гиперповерхностей Q<sup>r</sup><sub>IJ</sub> - с одномерными - и 12 гиперповерхностей Q<sup>r</sup><sub>IJK</sub> - с двухмерными образующими симплексами) (рис. 1). Так как твердофазная растворимость отсутствует, то у линейчатых гиперповерхностей один или два направляющих элемента (поверхность или две линии) совмещаются с ребрами гиперпризмы и затем проецируются в вершины тетраэдра (LiCl≡A<sub>eIJ</sub>,  $A_{EIJK};$ Li<sub>2</sub>CrO₄≡B<sub>eIJ</sub>, LiVO₄≡C<sub>eII</sub>,  $B_{EIJK};$  $C_{EIJK};$  $LiF \equiv D_{eIJ}, D_{EIJK}$ ).

Планарный ПТГМ предполагает принадлежность двух одномерных разрезов тетраэдра  $S_1S_6$  и  $S_4S_5$  его двумерному разрезу  $S_1S_2S_3$  (рис. 1а), располагающемуся параллельно грани тетраэдра Li<sub>2</sub>CrO<sub>4</sub>-LiVO<sub>3</sub>-LiF. Сначала на изоплете S<sub>4</sub>S<sub>5</sub> (рис. 1б), параллельной стороне  $S_2S_3$ , выявляется точка *r* на общем образующем симплексе А<sub>г</sub>В<sub>г</sub> двух линейчатых гиперповерхностей (Q<sup>r</sup><sub>ABC</sub> и Q<sup>r</sup><sub>ABD</sub>), принадлежащем также и горизонтальной гиперплоскости H<sub>ε</sub>. Проецирование точки r на отрезок S<sub>4</sub>S<sub>5</sub> дает соотношение, в котором он делится. Затем проводится разрез по лучу S<sub>1</sub>r до пересечения с гранью тетраэдра LiCl-LiVO<sub>3</sub>-LiF в точке  $S_6$  (рис. 1а). Сечение S<sub>1</sub>S<sub>6</sub> будет пересекать одномерный образующий отрезок линейчатой гиперповерх- но

ности A<sub>ε</sub>ε при температуре четверной эвтек-



Рис. 1. Схема расположения (а) разрезов  $s_3s_4$  (б),  $s_1s_6$  (в), LiCl( $s_7$ ) (г)

тики в точке  $4 \equiv r_{\epsilon}$  (рис. 1в). Аналогично рассмотренному выше случаю рассчитываются координаты точки  $r_{\epsilon}$ . На последнем этапе строиться разрез по лучу LiCl- $r_{\epsilon}$  до пересечения с гранью тетраэдра LiCrO<sub>4</sub>-LiVO<sub>3</sub>-LiF в точке S<sub>7</sub>. Точка разреза 2 и есть искомая точка  $\epsilon$  (рис. 1г).

Метод непланарных конод и коррекция графики в системе LiF-LiCl-LiVO<sub>3</sub>-Li<sub>2</sub>CrO<sub>4</sub>

Первые два разреза ( $S_4S_5$  и  $S_1S_6$ ) могут не принадлежать одной плоскости. Разрез  $S_4S_5$ располагают в поле кристаллизации А. Координаты г рассчитывают из выражений [6], составленных из координат  $S_i$  сечения и отношений, в которых делится основание разреза:

$$\begin{pmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{pmatrix} = \begin{pmatrix} \mathbf{s4}_1 \ \mathbf{s5}_1 \\ \mathbf{s4}_2 \ \mathbf{s5}_2 \\ \mathbf{s4}_3 \ \mathbf{s5}_3 \\ \mathbf{s4}_4 \ \mathbf{s5}_4 \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{pmatrix} = \begin{pmatrix} 0.75 \ 0.75 \\ 0.2 \ 0.2 \\ 0.05 \ 0 \\ 0 \ 0.05 \end{pmatrix} \begin{pmatrix} 0.76 \\ 0.24 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{r}_1 = 0.75, \\ \mathbf{r}_2 = 0.2, \\ \mathbf{r}_3 = 0.038, \\ \mathbf{r}_4 = 0.012. \end{pmatrix}$$

Через г и точку ребра LiCl-Li<sub>2</sub>CrO<sub>4</sub> строится разрез до пересечения с гранью LiCl-LiF-LiVO<sub>3</sub> с точкой  $r_{\epsilon}$ , а затем по лучу LICl- $r_{\epsilon}$ - разрез с точкой є. Для расчета координат r<sub>є</sub> и є составляются аналогичные матричные выражения. Можно также избежать ошибок в отображении сечений. Так, в [5] представлен разрез, у которого одна вершина расположена внутри симплекса LiCl-ELillCLVO3.CrO4-Li<sub>2</sub>CrO<sub>4</sub> (рис. 1а), а вторая – за линией LiCl-ELillF.Cl.CrO4 в симплексе LiCl-E LillF.Cl.CrO4-LiF. Такой разрез должен пересекать не одну, а две линейчатые гиперповерхности с одномерным образующим симплексом (Q<sup>r</sup><sub>AB</sub>, Q<sup>r</sup><sub>AD</sub>), а также три линейчатые гиперповерхности с двухмерным образующим симплексом ( $Q^{r}_{ABC}$ ,  $Q^{r}_{ABD}$ ,  $Q^{r}_{ADB}$ ). Тогда как в [5] дано по ошибке сечение типа S<sub>4</sub>S<sub>5</sub>.

Триангуляция системы K,Li,Ba//F,WO<sub>4</sub> с соединениями LiBaF<sub>3</sub>, K<sub>3</sub>FWO<sub>4</sub>, LiKWO<sub>4</sub>, K<sub>2</sub>Ba(WO<sub>4</sub>)<sub>2</sub> и внутренними диагоналями

Разработана программа, основанная на следующих действиях: представить исходные компоненты и образующиеся соединения многокомпонентной системы в виде графа и матрицы, составить список смежности по нулевым элементам матрицы смежности и, перемножив его строки с учетом закона поглощения, произвести инверсию (заменить полученные симплексы на дополняющие их микрокомплексы в исходном графе (комплексе). Для верификации результатов полиэдрации выведены формулы, связывающие количество тетраэдров s и внутренних плоскостей д с количеством точек (на ребрах k, гранях m и внутри комплекса b) и внутренних диагоналей q: g=2+k+m+2q-2b и s=3+k+m+q-b.

В системе K,Li,Ba||F,WO<sub>4</sub> (рис. 2, 3) [7] при составлении матрицы смежности по триангулированным граням призмы остаются 6 нераспознанных элементов, которые должны обозначать наличие внутренних диагоналей или же отсутствие связей между соответствующими вершинами: x<sub>7</sub>-x<sub>4</sub>, x<sub>7</sub>-x<sub>8</sub>, x<sub>7</sub>-x<sub>9</sub>, x<sub>7</sub>x<sub>10</sub>, x<sub>9</sub>-x<sub>3</sub>, x<sub>10</sub>-x<sub>2</sub>.

Так как внутренняя диагональ связывает соединение на стороне треугольной грани с противолежащей вершиной аналогичной грани, то вершину  $x_7$  надо соединить не только с  $x_4$ , но и с  $x_8$  (получаем единичные элементы  $x_4x_7$  и  $x_7x_8$ . Поскольку внутренние диагонали (как и внешние) не могут пересекаться, то анализируются возможные пересечения. Так как предполагаемые диагонали  $x_2$ - $x_{10}$  и  $x_7$ - $x_{10}$  принадлежат двумерному мик-

рокомплексу х2х7х3х9х10, то они должны пересекаться с альтернативными диагоналями х<sub>3</sub>-х<sub>9</sub> и х<sub>7</sub>-х<sub>9</sub>. Поэтому, составляются два варианта матрицы смежности: с нулевыми элементами х<sub>3</sub>-х<sub>9</sub>, х<sub>7</sub>-х<sub>9</sub> (единичные элементами х2-х10, х4-х7, х7-х8, х7-х10) и х2-х10, х7-х10 (единичные элементы х<sub>3</sub>-х<sub>9</sub>, х<sub>4</sub>-х<sub>7</sub>, х<sub>7</sub>-х<sub>8</sub>, х<sub>7</sub>х<sub>9</sub>). В результате расчета получаем два набора по 11 тетраэдров:  $x_1x_2x_7x_8+x_1x_3x_7x_8+$  $x_2x_4x_7x_8 + x_2x_4x_7x_{10} + x_2x_4x_9x_{10} + x_2x_5x_6x_9 + x_2x_6x_7x_8$  $_{10}+x_2x_6x_9x_{10}+x_3x_4x_7x_8+x_3x_4x_7x_{10}+x_3x_6x_7x_{10}$  (рис. 3a)  $\mu x_1x_2x_7x_8+x_1x_3x_7x_8+x_2x_4x_7x_8+x_2x_4x_7x_9+$  $x_{2}x_{5}x_{6}x_{9}+x_{2}x_{6}x_{7}x_{9}+x_{3}x_{4}x_{7}x_{8}+x_{3}x_{4}x_{7}x_{9}+x_{3}x_{4}x_{9}x_{10}$  $+x_{3}x_{6}x_{7}x_{9}+x_{3}x_{6}x_{9}x_{10}$  (puc. 36), с повторением тетраэдров  $X_1X_2X_7X_8$ ,  $X_1X_3X_7X_8$ ,  $x_2 x_4 x_7 x_8$ , х<sub>2</sub>х<sub>5</sub>х<sub>6</sub>х<sub>9</sub> и х<sub>3</sub>х<sub>4</sub>х<sub>7</sub>х<sub>8</sub>. То есть микрокомплекс х<sub>2</sub>х<sub>3</sub>х<sub>4</sub>х<sub>6</sub>х<sub>7</sub>х<sub>9</sub>х<sub>10</sub> может состоять из двух наборов тетраэдров: x<sub>2</sub>x<sub>4</sub>x<sub>7</sub>x<sub>10</sub>, x<sub>2</sub>x<sub>4</sub>x<sub>9</sub>x<sub>10</sub>, x<sub>2</sub>x<sub>6</sub>x<sub>7</sub>x<sub>10</sub>, Х2Х6Х9Х10, Х3Х4Х7Х10, Х3Х6Х7Х10 ИЛИ Х2Х4Х7Х9,  $X_{2}X_{6}X_{7}X_{9}$ , X3X4X7X9, X<sub>3</sub>X<sub>4</sub>X<sub>9</sub>X<sub>10</sub>, X3X6X7X9, х<sub>3</sub>х<sub>6</sub>х<sub>9</sub>х<sub>10</sub>. При этом двумерный микрокомплекс x<sub>2</sub>x<sub>7</sub>x<sub>3</sub>x<sub>10</sub>x<sub>9</sub> разбивается альтернативными парами диагоналей x<sub>2</sub>x<sub>10</sub>, x<sub>7</sub>x<sub>10</sub> и x<sub>2</sub>x<sub>10</sub>, x<sub>7</sub>x<sub>9</sub> на треугольники x<sub>2</sub>x<sub>7</sub>x<sub>10</sub>, x<sub>2</sub>x<sub>9</sub>x<sub>10</sub>, x<sub>3</sub>x<sub>7</sub>x<sub>10</sub> или x<sub>2</sub>x<sub>7</sub>x<sub>9</sub>, x<sub>3</sub>x<sub>7</sub>x<sub>9</sub>, x<sub>3</sub>x<sub>9</sub>x<sub>10</sub>, соответственно.



Рис. 2. Развертка системы K,Li,Ba||F,WO4 a)  $x_1$   $x_2$   $x_3$   $x_4$   $x_2$   $x_4$   $x_2$   $x_4$   $x_5$   $x_4$   $x_5$   $x_4$   $x_5$   $x_4$   $x_5$   $x_4$   $x_5$   $x_5$   $x_4$   $x_5$   $x_5$  $x_5$ 

Рис. 3. Триангуляция призмы K,Li,Ba||F,WO<sub>4</sub> альтернативными парами диагоналей

Результаты триангуляции трехмерного комплекса (тригональной призмы с 4-мя соединениями) проверяются подсчетом количества внутренних плоскостей g и тетраэдров s: g=2+k+m+2q-2b=2+4+8=14 (m=0, b=0), s=3+k+m+q-b=3+4+4=11 (m=0, b=0). А также подтверждаются уравнением Эйлера, связывающим общее количество всех вершин (k), ребер (r), диагоналей (d) на гранях и внутри граней, внутренних плоскостей (f) и тетраэдров (s): (6+k)-(r+d+q)+(f+g)-s=(6+4)-(13+11+4)+(16+14)-11=1.

# Выводы

Компьютерные модели дают возможность наглядно представить геометрическое строение фазовых диаграмм, а также реализовать различные варианты их разрезов. Понимание закономерностей строения диаграмм позволяет прогнозировать вид двухмерных сечений, исходя из их расположения относительно элементов ликвидуса, и исключить возможные ошибки в их графике. При помощи компьютерных моделей разработан непланарный метод конод с матричпреобразованиями ными координат ЛЛЯ определения нонвариантных составов, исправлена графика экспериментальных разрезов системы LillF,Cl,VO<sub>3</sub>,CrO<sub>4</sub>. Триангуляция системы K,Li,Ba||F,WO4 с соединениями Li-BaF<sub>3</sub>, K<sub>3</sub>FWO<sub>4</sub>, LiKWO<sub>4</sub>, K<sub>2</sub>Ba(WO<sub>4</sub>)<sub>2</sub> и внутренними диагоналями подтверждена при помощи выведенных впервые топологических закономерностей.

### Список литературы

1. Делимарский Ю.К., Зарубицкий О.Г. Электролитическое рафинирование тяжелых металлов в ионных расплавах. - М.: Металлургия, 1975. - 248 с.

2. Петров Д.А. Необходимое и достаточное число разрезов для построения моновариантных кривых в тройных и четверных системах // Журн. физ. химии. - 1940. - Т.14. - № 11. - С.1498-1508.

3. Посыпайко В.И. и др. Проекционнотермографический метод исследования тройных и тройных взаимных систем // ДАН СССР. - 1976. -Т.228. - № 4. - С.811-813.

4. *Трунин А.С., Хитрова Л.М.* Определение характеристик четверных эвтектик проекционнотермографическим методом // Укр. хим. жур. - 1977. -Т.43. - № 3. - С.256-259.

5. *Губанова Т.В., Кондратюк И.М. и др.* Фазовые равновесия в четырехкомпонентной системе LiF-LiCl-LiVO<sub>3</sub>-Li<sub>2</sub>CrO<sub>4</sub> // Журн. неорг. химии. - 2004. - Т.53. - № 5. - С.1184-1187.

6. *Lutsyk V.I., Vorob'eva V.P.* Relation between the Mass-Centric Coordinates in the Multicomponent Salt Systems // Z. Naturforsch. A. - 2008. - Vol. 63a. - № 7-8. - P.513-518.

7. Гасаналиев А.М. и др. Дифференциация многокомпонентных систем с внутренними (скрытыми) секущими // Журн. неорг. химии. - 2010. - Т.55. - № 12. - С.2083-2095. 8. *Lutsyk I.V., Zelenaya A.E., Zyryanov A.M.* Multicomponent systems simulation by the software of "Diagrams Designer" // J. Materials, Methods & Technologies. Int. Sci. Publ. - 2008. - Vol. 2. - Part. 1.- P.176-184.