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INTRODUCTION 

Computer models of T–x–y–z diagrams make it
possible to clearly visualize geometric structures in
both the concentration projection and projections that
take into account temperature; in addition, they pro�
vide different vertical and horizontal cross sections
[1, 2]. Having understood the structural regularities of
a T–x–y–z diagram under study, one can predict the
form of two�dimensional cross sections based on their
position in the concentration projection with respect
to the liquidus elements; thus, errors in their construc�
tion can be excluded [3]. 

We will imitate the tie�line method to search for the
invariant�point coordinates by the example of a model
of T–x–y–z diagram of eutectic type without solid�
phase solubility. 

MODEL OF T–X–Y–Z DIAGRAM 
OF EUTECTIC TYPE WITHOUT SOLID�PHASE 

SOLUBILITY 

This diagram contains four hypersurfaces of liqui�
dus QI, 24 ruled hypersurfaces (12 hypersurfaces with

a one�dimensional simplex generator  and 12 hyper�

surfaces a two�dimensional simplex generator ),
and a horizontal hyperplane at the quaternary�eutec�
tics temperature T

ε
 (Fig. 1a, table) [4]. There are four

two�phase regions L + I (I = A, B, C, D), six three�
phase regions L + I + J, and five four�phase regions
(L + A + B + C, L + A + B + D, L + A + C + D, L +
B + C + D, A + B + C + D) between the hypersurfaces.
To construct a computer model of a diagram, we used
the kinematic way of describing hypersurfaces [1, 2, 5],
in which the coordinates of points of four initial com�
ponents (I), six binary eutectics (eIJ), four ternary
eutectics (EIJK), and a quaternary eutectic (ε) are set as
the initial data. The initial dataset includes also the

corresponding conjugate points of the tie�lines located
on the edges of hyperprism: 12 points IeIJ and 12 points
IEIJK at the temperature of binary and ternary eutectics
(TeIJ and TEIJK) and four points I

ε
 at the quaternary�

eutectics temperature (T
ε
). The curvature on the

binary and univariant liquidus lines and on the hyper�
surface was taken into account.

IMITATION OF THE TIE�LINE METHOD 

In the conventional tie�line method [6–8], the
coordinates of quaternary�eutectics point are sought
as follows. First, the three�dimensional vertical cross
section mnk, which is parallel to the tetrahedron face
BCD and is located before the eutectics, is considered
(Fig. 1b). Then, the vertical cross section g f is set on
mnk parallel to the side nk to reveal the point (r) on the
common simplex generator A

ε
B
ε
ε of the ruled hyper�

surfaces  and , which belongs to the hori�
zontal hyperplane H

ε
 at the quaternary�eutectics tem�

perature (T
ε
). A cross section mh is drawn through the

vertex m on the edge BS and the found point r to inter�
sect the tie�line A

ε
ε (at the point r

ε
), which belongs to

the ruled hypersurface  at the temperature of the
horizontal hyperplane H

ε
. Then, the cross section Ap,

in which the desired point ε lies, is drawn through the
tetrahedron vertex A and the point r

ε
.

We propose an approach in which one does not
need to set the three�dimensional vertical cross sec�
tion and the where the first two two�dimensional sec�
tions (g f and mh) may belong to different planes (Fig.
2a). At the first stage, a two�dimensional cross section
located in the projection within one of the liquidus
hypersurfaces, is set by two points on the tetrahedron
faces. For example, the cross section s1(0.6; 0.25;
0.15; 0) – s2(0.6; 0.25; 0; 0.15) (Fig. 2b) intersects the
hypersurface of the liquidus QA (line 1–2), ruled
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hypersurfaces  (3–4),  (5–6) (Fig. 3c), 

(6–7), and the hypersurface at T
ε
 (8–6–9). The cross

section point 6 ≡ r belongs to the common two�dimen�
sional simplex generator A

ε
B
ε
ε of the ruled hypersur�

QAB
r

QABC
r

QABD
r faces  and  at T

ε
. Having assumed the length

of the segment s1s2 to be unity when projecting the
point r on it (Fig. 2b), we find this point to divide the
segment in the ratio of 0.673 : 0.327. Thus, the coordi�
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Fig. 1. (a) Model of a T–x–y–z diagram in the XYZ projection and (b) the scheme for constructing cross sections.

Contours of hypersurfaces of the liquidus QI and the ruled hypersurfaces  and 
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nates of the point r can be calculated using the matrix
transformations [9]

At the second stage, a cross section is drawn
through the found point r and an arbitrary point
s3(0.6; 0.4; 0; 0) of the tetrahedron edge AB to the
intersection with the tetrahedron face ACD at the
point s4 (Fig. 2a). Since the point s4 belongs to the tet�
rahedron plane ACD, s42 = 0. The other coordinates,
s41, s43, s44, are found from the joint solution of the
equations of the ACD plane and the straight line s3r.
The equation of the plane has the form s41 + s43 +
s44 – 1 = 0. The equation of the straight line in the
parametric form can be written as

.

Let us substitute the found values of s41, s43, and s44

into the equation of plane and calculate t = 2.667.
Having substituted t into the equation of the straight
line, we obtain:
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Thus, the coordinates of the point s4 are (0.6; 0;
0.2694; 0.1306). The cross section s3s4 intersects the

liquidus QA (line 1–2); the ruled hypersurfaces 

(3–4),  (4–5), and  (4–6) (Fig. 2c); and the
one�dimensional segment generator of the ruled
hypersurface at the temperature of quaternary eutec�
tics A

ε
ε at the point 4 ≡ r

ε
.

Similar to the above�considered case, when pro�
jecting the point r

ε
, we find it to divide the cross sec�

tion base in the ratio of 0.78 : 0.22 and then calculate
its coordinates:

Let us draw a cross section along the ray Ar
ε
 to its

intersection with the BCD face at the point s5
(Fig. 2a); here, s51 = 0. The coordinates s52, s53, and
s54 are calculated by joint solution of the equations of
the plane BCD and the straight line Ar

ε
. The equation

of the plane has the form s52 + s53 + s54 – 1 = 0. The
equation of the straight line in the parametric form can
be written as

.

The obtained values of s52, s53, and s54 are substi�
tuted into the equation of the plane to find t to be 0.25.
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Having substituted t into the equation of the straight
line, we determine the coordinates of the point s5 as
follows: (0; 0.22; 0.5252; 0.2548). The cross section

As5 intersects QA (1–2), QC (2–3),  (2–4), 
(2–5), and H

ε
 (Fig. 2d). In this cross section, point 2

is the desired point ε, which divides the cross section
base in the ratio of 0.74 : 0.26. Its coordinates are
found from the expression

.

The tie�line method can be optimized by drawing
the first section through two ternary eutectics.

ERRORS IN MAPPING CROSS SECTIONS 
OF T–X–Y–Z DIAGRAMS

Based on the location of the cross section, one can
draw conclusions on its form and avoid errors in inter�
preting experimental data. In particular, Gubanova et
al. [10] presented a cross section in which one vertex
obeys the condition s1∈ABD (i.e., is located inside the
simplex AEABDB) and the other lies behind the line
AEABD in the simplex AEABDD. This cross section
should intersect two ruled surfaces with a one�dimen�
sional simplex generator ( , ), three ruled
hypersurfaces with a two�dimensional simplex gener�

ator ( , , ), and a hyperplane (H
ε
) at

the quaternary�eutectics temperature, which follows
from the location of the cross section. At the same
time, cross sections of the s1s2 type were reported
in [10]. 

When analyzing the Li,Ba,Mg,Zr//F system [11],
it was believed that the cross section drawn through the
vertex of ZrF4 tetrahedron and the opposite ternary
eutectics Li,Ba,Mg//F contains the quaternary�
eutectics point. However, in reality, the quaternary�

eutectics point was not found [3]. According to the
topological structure of the diagram, the ternary
eutectics under consideration should lie on the con�
tinuation of the tie�line connecting the vertex of ZrF4

and the ternary�eutectics point, which corresponds to
a particular case of the diagram structure. 

CONCLUSIONS 

The proposed modification of the tie�line method
makes it possible to determine the coordinates of
invariant points in T–x–y–z diagrams using three
two�dimensional vertical cross sections (that are not
related to the same plane) and matrix calculations.
This method of constructing models of T–x–y–z dia�
grams allows one to not only visualize and understand
their geometric structure but also, when studying ver�
tical cross sections, to choose their most optimal posi�
tion and avoid errors in their interpretation.
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