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INTRODUCTION

Single crystals of the low�temperature modifica�
tion of barium metaborate are widely used in nonlin�
ear optics, in particular for laser frequency conversion
in the visible and UV regions [1, 2]. To choose appro�
priate solvents for their growth, reciprocal salt systems
(presented in the form of polyhedra) are investigated.
The formation of compounds calls for the polyhedra�
tion of the concentration space (partition of com�
plexes into simplices and (or) simpler complexes).
After determining the stable cutting elements, it is
necessary to identify each obtained subsystem. When
speaking about identification, one should mean either
the establishment of affiliation of composition to a
specific subsystem or, vice versa, the possibility of
finding a composition coinciding with the center of
mass of material points in the vertices of this sub�
system. The polyhedration of reciprocal salt systems
encounters some problems. One of them is related to
the existence of isolated vertices in simplices, which
correspond, e.g., to the Na2Sr(VO3)4 compound in the
Na2O–V2O5–SrO system [3].

FORMULAS THAT RELATE BARYCENTRIC 
COORDINATES

The establishment of relationship between concen�
tration coordinates is related to the problem of identi�
fying a point as a center of mass in different groups of
material points. This class of problems also includes
the determination of affiliation of a point to a simplex
or a complex, as well as the problem of polyhedration

of concentration complexes into simplices and micro�
complexes of the same dimension [4–10].

The barycentric coordinates (B coordinates) of any
subsystem X of dimension m can be related to the
coordinates of a primitive system Z, which is com�
posed of n simple elements (m ≤ n), using the matrix
product, in terms of the matrix K of dimension (n ×
m), the columns of which contain the Z coordinates of
vertices of simplex X: 

Z = K ⋅ X or . (1)

The concentration of an n�component mixture can
be expressed in mass, molar, or equivalent fractions. If
two systems of B coordinates, Z and Y, have the same
dimension (n) and coinciding coordinates of simplex
vertices but differ in masses placed in these vertices
and if the simplex vertices contain masses pi and qi in
the systems Z and X, respectively, the coordinates zi

and yi are related as follows:

. (2)

Formulas (2) relate coordinates expressed in terms
of equivalent fractions. If all weighting coefficients
pi = 1, the composition is expressed in terms of molar
fractions. 

The mass (Bi) and molar (Ni) fractions are related
by the expressions
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Bi = , Ni = , (3)

where Mi is the mass of one mol of the ith component. 

IDENTIFICATION OF TERNARY 
HETERO�COMPOUND BA2NA3(BO2)6F 

WITH RESPECT TO THE BA–NA–B–O–F 
SYSTEM AND ITS SUBSYSTEMS

Hetero�compound D = Ba2Na3(B3O6)2F [11,12]
can be represented in the square of the ternary recip�
rocal system Ba,Na||BO2,F; in the prism of the quater�
nary reciprocal fluoride�oxide system Ba,Na,B||F,O;
and in the pentatop of the quinary system Ba–Na–B–
O–F (Fig. 1). 

In the pentatop of the quinary system Ba–Na–
B–O–F, the B coordinates of the compound D are
[Ba] = 2, [Na] = 3, [B] = 6, [O] = 12, [F] = 1 or, after
normalization, (2/24, 3/24, 6/24, 12/24, 1/24).

A transition from the B coordinates (2/24, 3/24,
6/24, 12/24, 1/24) of the compound in the quinary
system Ba–Na–B–O–F to the subsystem (simplex)
1/7BaB2O4–1/3BaF2–1/4 NaBO2 of the reciprocal
system 1/7 BaB2O4–1/3 BaF2–1/2 NaF–1/4 NaBO2

leads to the equation 

 = ,

x1 = , x2 = , x3 = ,

(it follows from the equalities 3/24 = x3/4 and 1/24 =
2x2/3 that x3 = 12/24 = 8/16 and x2 = 3/48 = 1/16;
hence, the normalization condition yields x1 = 1 –
x2 – x3 = 7/16). 

This solution means that, to form a unit mass
D = Ba2Na3B6O12F (qD = 1), one must take  =

7/16,  = 1/16, amd  = 8/16:

1/24Ba2Na3B6O12F = 7/16Ba1/7B2/7O4/7

+ 1/16Ba1/3F2/3 + 8/16Na1/4B1/4O2/4.
Indeed, since the initial material points contained

the masses
 = pBa + pB + pO = 1/7 + 2/7 + 4/7 = 1,

 = pBa + mF = 1/3 + 2/3 = 1, 

 = pNa + pB + pO = 1/4 + 1/4 + 2/4 = 1,

having taken three salts of unit mass in the ratio of
7 : 1 : 8, one obtains a unit mass of the compound D:

(pBa + pB + pO) + (pBa + pF) + (pNa + pB + pO)
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= Ba2Na3B6O12F.

Thus, the location of the compound D in the sub�
system 1/7BaB2O4–1/3BaF2–1/4NaBO2 is described
by the ratio 7 : 1 : 8. 

Let us now increase the masses of salts in the square
vertices so as to make the coefficients at them equal to
unity (i.e., we pass to a new coordinate system by
locating the masses  = 7,  = 3, qNaF = 2,

and  = 4 at the material points 1/7BaB2O4,

1/3BaF2, 1/2NaF, and 1/4NaBO2, respectively).
Then, according to formula (2), the point of the com�
pound D with the coordinates (7/16, 1/16, 8/16) is
transferred to the position with the coordinates 

y1 =  = , 

y2 =  = , y3 =  

or to the position 3 : 1 : 6 with the mass of compound
D equal to 2:

2Ba2Na3B6O12F = 3BaB2O4 + BaF2 + 6NaBO2.
Hence, in the subsystem BaB2O4–BaF2–NaBO2,

the compound D is located at a point with the coordi�
nates (3/10, 1/10, 6/10) and correspond to the ratio of
the initial salts as 3 : 1 : 6. 
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Fig. 1. Compound D = Ba2Na3(B3O6)2F in pentatope of
quinary system Ba–Na–B–O–F. 
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If we double the masses at the vertices of sodium
fluoride and sodium borate, i.e., reduce the number of
anions forming the initial salt to two by forming the
subsystem Ba(BO2)2–BaF2–Na2(BO2)2 in the ternary
reciprocal system Ba(BO2)2–BaF2–Na2F2–Na2(BO2)2,
the coordinates of point D will change. This change can
be determined in two ways, i.e., by passing

(i) from (7/16, 1/16, 8/16) of the subsystem
1/7Ba(BO2)2–1/3BaF2–1/4NaBO2

with  =  =  = 1; or

(ii) from (3/10, 1/10, 6/10) of the subsystem
Ba(BO2)2–BaF2–NaBO2 

with  = 7,  = 3,  = 4.

In the first case, one uses the expressions 

y1 =  = ,

y2 = , y3 = .

In the second case, it is necessary to construct the
equations 

= , 

 = ,

the solution of which yields the same results, i.e., y1 =
3/7, y2 = 1/7, y3 = 3/7. Therefore, when doubling the
mass of the NaBO2 point, in the BaB2O4–BaF2–
Na2(BO2)2 subsystem, the material point D with a
mass of 2 is transferred to the point (3/7, 1/7, 3/7),
according to the ratios of the initial salts, 3 : 1 : 3:

2Ba2Na3B6O12F = 3BaB2O4 + BaF2 + 3Na2(BO2)2.
To express a compound of a ternary reciprocal sys�

tem in terms of the contents of system�forming salts,
one must determine the content of each ion in the
compound and then multiply pairwise the number of
cations by the number of corresponding anions. The
thus obtained values also become coefficients in the
expansion of the compound in four salt components.

For example, in the compound Ba2Na3(BO2)6F of
the ternary reciprocal system Ba(BO2)2–BaF2–NaF–
NaBO2 with masses in the complex vertices  = 7,

 = 3, qNaF = 2, and  = 4, the numbers of cat�

ions are [Ba] = 2 and [Na] = 3, while the numbers of
anions are [BO2] = 6 and [F] = 1. Therefore, the num�
bers of salts will be as follows: [Ba(BO2)2] = 2 ⋅ 6 = 12,
[BaF2] = 2, [NaF] = 3, and [NaBO2] = 3 ⋅ 6 = 18. As
a result, the compound can be decomposed into four
initial salts of the system Ba(BO2)2–BaF2–NaF–
NaBO2 as 12 : 2 : 3 : 18 or
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7Ba2Na3(BO2)6F = 12Ba(BO2)2 + 2BaF2

+ 3NaF + 18NaBO2.
In the Ba2Na3(BO2)6F compound, in the

Ba(BO2)2–BaF2–Na2F2–Na2(BO2)2 system with
masses of  = 7,  = 3,  = 4, and

 = 8, there are [Ba] = 2 and [Na2] = 3/2 cat�

ions and [(BO2)2] = 3 and [F2] = 1/2 anions. Thus, the
numbers of the salts will be [Ba(BO2)2] = 2 ⋅ 3 = 6,
[BaF2] = 2 ⋅ (1/2) = 1, [Na2F2] = (3/2) ⋅ (1/2) = 3/4,
and [Na2(BO2)2] = (3/2) ⋅ 3 = 9/2, and the compound
under consideration can be expanded into four initial
salts of the system Ba(BO2)2–BaF2–Na2F2–
Na2(BO2)2 as 6 : 1 : 3/4 : 9/2 = 24 : 4 : 3 : 18 or

14Ba2Na3(BO2)6F = 24Ba(BO2)2 

+ 4BaF2 + 3Na2F2 + 18Na2(BO2)2.
Note that the fractions of the salts in the compound

that are present in the same ternary reciprocal system
but with different masses in the complex vertices are
related by the formula

CiQi = ciqi, (4)
where Ci, Qi are the fraction and mass of the ith salt in
one system and ci, qi are the same parameters in the
other system. 

For example, in the Ba(BO2)2–BaF2–NaF–
NaBO2–NaF system with masses in the complex ver�
tices qBa(BO2)2 = 7, qBaF = 3, qNaF = 2, and  = 4,
the salts in compound D are related as 12 : 2 : 3 : 18,
whereas in the 1/8 Ba(BO2)2–1/2 BaF2–NaF–1/4
NaBO2 system with the masses  = 7/8,  =
3/2, mNaF = 2, and  = 1, they are related as 96 :
4 : 3 : 72. If we introduce the designations  = 7,
qBaF = 3, qNaF = 2,  = 4,  = 12, cBaF = 2,

cNaF = 3, and  = 18 for the system Ba(BO2)2–
BaF2–NaF–NaBO2 and  = 7/8,  = 3/2,

QNaF = 2,  = 1,  = 96, CBaF = 4, CNaF = 3,

and  = 72, we obtain 

 = 96 ⋅ 7/8

=  = 12 ⋅ 7 = 84, 

 = 4 ⋅ 3/2 =  = 2 ⋅ 3 = 6,

CNaFQNaF = 3 ⋅ 2 = cNaFqNaF = 3 ⋅ 2 = 6,

 = 72 ⋅ 1 =  = 18 ⋅ 4 = 72.

Formula (4) makes it easier to determine the ratio
of salts (i.e., their coefficients in the decomposition
equation) in a system with specified masses in the
complex vertices according to the known ratios of the
same salts but with other masses in the vertices. 

For example, the Ba(BO2)2–BaF2–Na2F2–Na2(BO2)2

system is indeed reciprocal because the following
exchange reaction (without equating coefficients)
occurs in it: 
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Ba(BO2)2 + Na2F2 = Na2(BO2)2 + BaF2.
The coefficients in the system Ba(BO2)2–BaF2–

NaF–NaBO2 are chosen so as to equalize the contents
of the corresponding cations and anions; therefore,
exchange reactions also occur in this system as follows: 

Ba(BO2)2 + 2NaF = 2NaBO2 + BaF2.
These two systems are identical because the

exchange reactions in both involve a doubled number
of sodium cations (with corresponding doubling of the
number of anions).

At the same time, the 1/7 Ba(BO2)2–1/3 BaF2–1/2
NaF–1/4 NaBO2 system at unit masses at the com�
plex vertices (pi = 1) cannot be called reciprocal
because one must choose the equalizing coefficients
(thus increasing the masses in the complex vertices): 

7[1/7Ba(BO2)2] + 4[1/2NaF]
= 8[1/4NaBO2] + 3[1/3BaF2].

Correspondingly, it is fairly difficult to determine
the ratios  :  : cNaF :  for the salts while

specifying compound D because the coefficients 1/7
and 1/3 stand before the Ba+ cation and the coeffi�

cients 2/7 and 1/2 are before the  anion. How�
ever, these ratios can be calculated from formula (4)
using the relationship  :  : CNaF :  =

12 : 2 : 3 : 18 in the Ba(BO2)2–BaF2–NaF–NaBO2

system with the masses  = 7, QmBaF = 3,

QNaF = 2, and  = 4 in the complex vertices:

 = /

= 12 ⋅ 7/1 = 12 ⋅ 7 = 84, 

 = /  = 2 ⋅ 3/1 = 6,

cNaF = CNaFQNaF/qNaF = 3 ⋅ 2/1 = 6,

cBaB2O4
cBaF2

cNaBO2

BO2
–

CBaB2O4
CBaF2

CNaBO2

QBa BO2( )2

QNaBO2

cBaB2O4
CBaB2O4

QBaB2O4
qBaB2O4

cBaF2
CBaF2

QBaF2
qBaF2

Table 1. Coordinates (2/24, 3/24, 6/24, 12/24, 1/24 = 0.083, 0.125, 0.250, 0.500, 0.042) of compound D = Ba2Na3B6O12F
of Ba–Na–B–O–F system in the subsystems

Subsystem Masses of material 
points qi

Component ratios
B coordinates

molar mass

a) in Ba(BO2)2–BaF2–NaBO2 subsystem of Ba(BO2)2–BaF2–NaF–NaBO2 system

1/7BaB2O4–1/3BaF2–
1/4NaBO2

pi = 1 7 : 1 : 8 7/16, 1/16, 8/16 =
0.44, 0.06, 0.50

0.54, 0.14, 0.32

1/7Ba(BO2)2–1/3BaF2–
1/2NaF–1/4NaBO2

pi = 1 14 : 1 : 1 : 12

Ba(BO2)2–BaF2–NaBO2 qBaB2O4 = 7, qBaF2 
= 3, 

qNaBO2 = 4
3 : 1 : 6 3/10, 1/10, 6/10 =

0.3, 0.1, 0.6
0.54, 0.14, 0.32

Ba(BO2)2–BaF2–NaF–
NaBO2

qBaB2O4 
= 7, qBaF2 

= 3, 
qNaF = 2, qNaBO2 = 4

12 : 2 : 3 : 18

Ba(BO2)2–BaF2–
Na2(BO2)2

qBaB2O4 
= 7, qBaF2 

= 3, 
qNaBO2 = 4

3 : 1 : 3 3/7, 1/7, 3/7 =
0.43, 0.14, 0.43

0.54, 0.14, 0.32

Ba(BO2)2–BaF2–
Na2F2–Na2(BO2)2

qBaB2O4 
= 7, qBaF2 

= 3, 
qNaF = 4, qNaBO2 = 8

24 : 4 : 3 : 18

b) in BaO–Na2O–B2O3–BaF2 subsystem of BaO–Na2O–B2O3–BF2–NaF–BF3 system

1/2BaO–1/3Na2O–
1/5B2O3–BaF2

pi = 1 2 : 3 : 10 : 1 2/16, 3/16, 10/16, 1/16 =
0.12, 0.19, 0.63, 0.06

0.37, 0.15, 0.34, 0.14

1/2BaO–1/3Na2O–
1/5B2O3–1/3BF2–
1/2NaF–1/4BF3

pi = 1 16 : 18 : 60 : 1 : 1 : 4

BaO–Na2O–B2O3–
BaF2

qBaO = 2, qNa2O = 3, 
qB2O3 = 5, qBaF2 = 3

3 : 3 : 6 : 1 3/13, 3/13, 6/13, 1/13 =
0.23, 0.23, 0.46, 0.08 

0.37, 0.15, 0.34, 0.14

BaO–Na2O–B2O3–
BF2–NaF–BF3

qBaO = 2, qNa2O = 3, 
qB2O3 = 5, qBaF2 

= 3, 
qNaF = 2, qBF3 = 4

48 : 36 : 72:  2 : 3 : 6

BaO–Na2O–B2/3O–
BaF2

qBaO = 2, qNa2O = 3, 
qB2O3 = 5/3, qBaF2

 = 3 
3 : 3 : 18 : 1 3/25, 3/25, 18/25, 1/25 =

0.12, 0.12, 0.72, 0.04
0.37, 0.15, 0.34, 0.14

BaO–Na2O–B2/3O–
BF2–Na2F2–B2/3F2

qBaO = 2, qNa2O = 3, 
qB2O3 

= 5/3, qBaF2
 = 3,

qNaF = 4, qBF3 = 8/3

96 : 72 : 432 : 4 : 3 : 18
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 = /  = 18 ⋅ 4/1 = 72. 

Now, we can write the following equation (with
substitution of the obtained coefficients ci: 

7Ba2Na3B6O12F = 84(1/7BaB2O4)

+ 6(1/3BaF2) + 6(1/2NaF) + 72(1/4NaBO2).

Finally, in the 1/7Ba(BO2)2–1/3BaF2–1/2NaF–
1/4NaBO2 system, compound D is set by the salt ratios
84 : 6 : 6 : 72 or 14 : 1 : 1 : 12.

The molar coordinates (7/16, 1/16, 8/16) of com�
pound D in the 1/7BaB2O4–1/3BaF2–1/4NaBO2 sys�
tem are as follows:

b1 =  = 0.54, b2 = 0.14, b3 = 0.32, 

where  = MBa + 2MB + 4MO = 137.34 + 2 ⋅

10.81 + 4 ⋅ 15.99 = 190.96;  = MBa + 2MF =

137.34 + 2 ⋅ 18.99 = 171.34; and  = MNa +

MB + 2MO = 22.99 + 10.81 + 2 ⋅ 15.99 = 65.80.

One can verify that, when passing to mass frac�
tions, both the coordinates (3/10, 1/10, 6/10) in the
BaB2O4–BaF2–NaBO2 system and the coordinates
(3/7, 1/7, 3/7) in the BaB2O4–BaF2–Na2(BO2)2 sys�
tem of compound D will yield the same values, i.e.,
b1 = 0.540, b2 = 0.142, and b3 = 0.319 (Table 1а). 

Similarly, one can estimate the position of the point
that corresponds to compound D = Ba2Na3(B3O6)2F
in the BaO–Na2O–B2O3–BaF2 subsystem of the qua�
ternary reciprocal system BaO–Na2O–B2O3–BaF2–
NaF–BF3 with different masses at its vertices
(Table 1b). 

Thus, when the trapezoid BaB2O4–NaF–BaF2–
NaBO2 inside the initial pentatope Ba–Na–B–O–F
(Fig. 1) and the corresponding square 1/7BaB2O4–
NaF–BaF2–NaBO2 are transformed into squares with
other amounts of initial materials at the vertices, the
coordinates of the point corresponding to the com�
pound D = Ba2Na3(B3O6)2F change. Correspondingly,
different ratios of initial salts are required to form it.
For example, in the square Ba(BO2)2–BaF2–NaF–
NaBO2, the salts Ba(BO2)2, BaF, and NaBO2 must be
taken in the ratio 3 : 1 : 6, whereas the salts Ba(BO2)2,
NaF, and NaBO2 must be taken in the ratio 2 : 1 : 2. In
the other square with doubled masses of sodium salts,
the salts Ba(BO2)2, BaF2, and Na2(BO2)2 are taken in
the ratio 3 : 1 : 3, while the salts Ba(BO2)2, (NaF)2, and
(NaBO2)2 are taken in the ratio 4 : 1 : 2. These two pairs
of versions of expressions for concentrations corre�
spond to the accepted molar and equivalent ways of
setting the amounts of the initial materials. When sim�
ilar multidimensional figures are polyhedrated, it is
important to trace the masses of material points at the
vertices of polyhedra of the same or smaller dimen�
sions in the systems described by different authors in
different sources and using different ways to express
the concentration.

POLYHEDRATION

The main purposes of polyhedration of the concen�
tration space of a multicomponent system are as fol�
lows: 

(i) to describe the boundaries of all subsystems of
multidimensional concentration complex; 

(ii) to establish relationships between the local sys�
tems of B coordinates of subsystems in the unified
concentration space of multicomponent system; 

(iii) to determine the affiliation of an arbitrarily
specified composition of a multidimensional complex
of concentration subsystem. 

To solve the first problem, we developed a program
for analyzing the results of a partition of a multicom�
ponent system by quasi�binary cross sections and
(hyper)planes generated by them into subsystems.
Depending on the number of compounds formed
and/or the dimension of the concentration space,
this problem may be so cumbersome that it is not
expedient or even impossible to solve it without a
computer. 

To solve the second and third (which is inverse to
second) problems in the determination of each ith sub�
system, the linking equation of type (1) can be written
multiply in the form Z = KiXi, and the condition for the
affiliation of composition G to the subsystem X(xi) is
the inequality 

0 ≤ xi ≤ 1

for all of its m normalized coordinates xi. 

Kraeva’s polyhedration algorithm. Most often,
polyhedration is performed by the method based on
the interpretation of triangulated concentration space
in the form of a graph [13]. Polyhedra are recognized
using an algorithm that was used in the theory of
graphs when constructing a set of independent subsets
based on the adjacency matrix and its list [14]. Among
the two possible ways of describing a graph using an
adjacency list (containing unit elements of the adja�
cency matrix) or nonadjacency list (containing zero
matrix elements), the second technique is generally
preferred. 

The essence of this algorithm is as follows:

cNaBO2
CNaBO2

QNaBO2
qNaBO2

⋅

⋅ + ⋅ + ⋅

(7 16) ( 7)

( 16) (1 7) (1 16) (1 3) (8 16) (1 4)
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2 2

2 2 2 2
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(i) to enumerate (xi) and present the initial compo�
nents and stoichiometric compounds in the form of a
graph;

(ii) to write the triangular adjacency matrix R, in
which ri, j = 1 if the element xi is connected with xj and
ri, j = 0 if these elements are not connected (because, if
there is only one connection between two vertices and
the graph is unoriented, one can consider the adja�
cency matrix as triangular, having denoted the diago�
nal elements as ri, i = *);

(iii) to compile (based on the adjacency matrix) the
adjacency list RL, in which vertices nonadjacent to xi

are written in each ith row Ci; 

(iv) to multiply the rows of the adjacency list Ci with
allowance for the absorption rule in order to obtain the

sum ΣSj, j = , where f is the number of simplices
into which a given polyhedron can be divided;

(v) to perform inversion, i.e., to rewrite all Si terms
so as to include the absent graph vertices.

For example, to perform the triangulation of the
K,Ca||NO3,Cl system (Fig. 2a), numbers are assigned
to the vertices of the square KNO3 = x1, KCl = x2,
CaCl2 = x3, Ca(NO3)2 = x4 and to the compounds D1 =
KCl ⋅ CaCl2, = x5, D2 = KNO3 ⋅ 2Ca(NO3)2 = x6, and
D3 = KNO3 ⋅ 2Ca(NO3)2 ⋅ KCl = x7, after which the
adjacency matrix and adjacency list are written as follows:

1, f

R = ,

RL = .

Then, the rows of the adjacency list are successively
multiplied as follows:

(x1 + x3x4x5)(x2 + x3x4x6) = x1x2 + x1x3x4x6

+ x2x3x4x5 + x3x4x5x6.

Multiplication is performed according to the
absorption rule: when multiplying by the third row
(x3 + x6x7),

(x1x2 + x1x3x4x6 + x2x3x4x5 + x3x4x5x6)(x3 + x6x7)

= x1x2x3 + x1x3x4x6 + x2x3x4x5 + x3x4x5x6 + x1x2x6x7

+ x1x3x4x6x7 + x2x3x4x5x6x7 + x3x4x5x6x7,

the term x1x3x4x6x7 is cancelled out because it contains
another term: x1x3x4x6. Similarly, we exclude two more
terms: x2x3x4x5x6x7 and x3x4x5x6x7, which contain
x2x3x4x5 and x3x4x5x6, respectively. As a result, after
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Fig. 2. Polyhedration of (a) ternary reciprocal system K, Ca || NO3, Cl and (b) quaternary reciprocal system K, Ca, Na || NO3,
Cl with binary compounds D1 = KCl ⋅ CaCl2 and D2 = KNO3 ⋅ 2Ca(NO3)2 and quasi�quaternary compound K2Ca2(NO3)5Cl
[16] or D3 = 5KNO3 ⋅ KCl ⋅ CaCl2 ⋅ 5Ca(NO3)2.
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multiplication by the third row of the adjacency list,
the following sum remains:

x1x2x3 + x1x3x4x6 + x2x3x4x5 + x3x4x5x6 + x1x2x6x7,
which is then multiplied by the fourth row of the adja�
cency list:

(x1x2x3 + x1x3x4x6 + x2x3x4x5 + x3x4x5x6

+ x1x2x6x7)(x5 + x6) = x1x2x3x5 + x1x3x4x5x6

+ x2x3x4x5 + x3x4x5x6 + x1x2x5x6x7 + x1x2x3x6 

+ x1x3x4x6 + x2x3x4x5x6 + x3x4x5x6 + x1x2x6x7.
We cancel the terms of this sum, which contain its

other terms : x1x2x5x6x7 and x2x3x4x5x6, which contain,
respectively, x1x2x6x7 and x2x3x4x5, as well as the prod�
uct x1x3x4x5x6, which includes two terms: x1x3x4x6 and
x3x4x5x6.

As a result, polyhedration performed based on the
adjacency list is reduced to the multiplication of its
rows in the form

(x1 + x3x4x5)(x2 + x3x4x6)(x3 + x6x7)(x5 + x6)
= x1x2x3x5 + x2x3x4x5 + x3x4x5x6 + x1x2x3x6

+ x1x3x4x6 + x1x2x6x7.
The thus obtained terms cannot be physicochemi�

cally or geometrically interpreted. However, when
inverting them (i.e., replacing each term by a similar
product with absent polyhedron vertices), one obtains
a list of simplices into which the polyhedron is divided.
For example, the term x1x2x3x5 is rewritten in the form
x4x6x7, etc. After the inversion, the vertices of six sim�
plices (triangles) are enumerated: 

x4x6x7 + x1x6x7 + x1x2x7 + x4x5x7 + x2x5x7 + x3x4x5.
These are the simplices into which the square of the

K,Ca||NO3,Cl system is divided. The polyhedration of
the quaternary reciprocal system K,Ca,Na||NO3,Cl
(Fig. 2b) is performed similarly.

Polyhedration of the Li,K||BO2,SO4,WO4,Cl sys�
tem with compounds D1 = Li2WO4 ⋅ K2WO4 and D2 =
Li2SO4 ⋅ K2SO4 is completed by six pentatopes sepa�

rated by five tetrahedra (Fig. 3a), while the polyhedra�
tion of the Li,K||BO2,SO4,Cl,NO3 system with com�
pound D = Li2SO4 ⋅ K2SO4 is completed by five pen�
tatopes with four cutting tetrahedra (Fig. 3b).

After the polyhedration of the Li, Na, K||Cl, BO2,
WO4 system with compounds D1 = Na2WO4 ⋅ (NaCl)2

and D2 = Li2WO4 ⋅ K2WO4, we have nine pentatopes
and ten cutting tetrahedra (Fig. 2c). 

Limitations of the polyhedration algorithm in the
presence of internal points. According to Bergman’s
classification [15], a binary compound of a ternary
reciprocal system belongs to the diagonal of the com�
position square, a ternary compound is located in the
triangle separated by the stable diagonal, and a quater�
nary compound (in our opinion, it is more convenient
to call it quasi�quaternary) is formed from all four ini�
tial salts. 

For example, in the K,Ca||NO3,Cl system, the sto�
ichiometry KNO3 ⋅ 2Ca(NO3)2 ⋅ KCl is assigned to the
“ternary hetero�compound” D3 = K2Ca2(NO3)5Cl
[16], although it can also be formally written as
4KNO3 ⋅ CaCl2 ⋅ 3Ca(NO3)2. At the same time, the
absence of stable diagonal in the composition square
and the connection of this compound with three out of
the four vertices of the square and with compounds
D1 = KCl ⋅ CaCl2 and D2 = KNO3 ⋅ 2Ca(NO3)2

(Fig. 2a) give us grounds to consider it as a quasi�qua�
ternary compound 5KNO3 ⋅ KCl ⋅ CaCl2 ⋅ 5Ca(NO3)2. 

Similarly, proceeding from Bergman’s terminol�
ogy, if there were no stable diagonals in the
Ba,Na||F,BO2 system, the Ba2Na3(B3O6)2F compound
should be considered quasi�quaternary. In this paper,
the BaF2–NaBO2 diagonal is considered to be stable,
and compound D is considered to be ternary and to
belong to the Ba(BO2)2–BaF2–NaBO2 subsystem. 

When binary and quasi�quaternary compounds are
formed, there are no problems with triangulation. For
example, in the case of the triangulation of the
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Fig. 3. Polyhedration of quinary reciprocal systems (a) Li, K || BO2, SO4, WO4, Cl, (b) Li, K || BO2, SO4, Cl, NO3, and (c) Li,
Na, K || Cl, BO2, WO4.
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K,Ca||NO3,Cl system with the quasi�quaternary com�
pound 5KNO3 ⋅ KCl ⋅ CaCl2 ⋅ 5Ca(NO3)2, Kraeva’s
algorithm allows one to recognize all six simplices
(Fig. 2a). 

However, this algorithm cannot not recognize the
“internal” point of the ternary compound, which is
located in the corresponding simplex. For example, in
the case of the triangulation of the Ba,Na||F,BO2 sys�
tem based on the assumption of the stability of the
BaF2–NaBO2 diagonal with ternary compound D =
Ba2Na3(B3O6)2F, one can only see the BaF2–NaF–
NaBO2 simplex and Ba(BO2)2–BF2–NaBO2–D
microcomplex with the internal point D (Fig. 1). 

We have a similar situation with the ternary com�
pound Na2Sr(VO3)4 in the Na2O–V2O5–SrO system;
this compound is related via quasi�binary cross sec�
tions with the binary compounds NaVO3, Na2,5V6O16

and Sr2V2O7 (p. 99 in [3]). The aforementioned algo�
rithm distinguishes only the NaVO3–Na2.5V6O16–
Sr2V2O7–Na2Sr(VO3)4 microcomplex.

Thus, when complexes with internal points are
polyhedrated, Kraeva’s algorithm has certain limita�
tions. To remove these points, these internal vertices
can be excluded at the first stage, and primary triangu�
lation can be performed without them. Then, it is nec�
essary to find out to which obtained simplices the

remaining internal points belong and to perform an
additional partition of the formed microcomplexes. In
other words, when performing triangulation of the
Ba,Na||F,BO2 system, one must first perform triangu�
lation without compound D; then, if D ∈ {Ba(BO2)2–
BF2–NaBO2}, we connect D with the vertices
Ba(BO2)2, BF2, and NaBO2.

POLYHEDRATION TESTING

Manual polyhedration [13] leads to cumbersome
calculations and is unreasonable without correspond�
ing software. However, when using a program, one
must verify both the correctness of the introduction of
the initial information into the adjacency matrix and
the results obtained at the output in a particular way.
Therefore, to verify elements of the adjacency list
introduced into the program, we derived relations that
linked the number of adjacency matrix elements
(graph vertices and bonds between them) with the
number of internal diagonal planes and simplices and
made it possible to estimate a priori the result of sim�
plexing. 

Triangulation testing. The triangulation rules (in
the condensed form) for ternary systems with interme�
diate phases of constant composition reflect the

Table 2. Results of polyhedration of quinary reciprocal systems Li,K||BO2,SO4,WO4,Cl, Li,K||BO2,SO4,Cl,NO3 and
Li,Na,K||Cl,BO2,WO4 (Fig. 3)

System Adjacency list RL Simplices

Li,K||BO2,SO4,WO4,Cl
D1 = Li2WO4 ⋅ K2WO4

D2 = Li2SO4 ⋅ K2SO4 

x1x6x8x9x10 = (LiBO2)2–K2SO4–(KCl)2–D1–D2

x1x3x8x9x10 = (LiBO2)2–Li2WO4–(KCl)2–D1–D2

x1x2x3x8x9 = (LiBO2)2–Li2SO4–Li2WO4–(KCl)2–D1

x1x2x3x4x8 = (LiBO2)2–Li2SO4–Li2WO4–(LiCl)2–(KCl)2

x1x6x7x8x10 = (LiBO2)2–K2SO4–K2WO4–(KCl)2–D2

x1x5x6x7x8 = (LiBO2)2–(KBO2)2–K2SO4–K2WO4–(KCl)2

Li,K||BO2,SO4,Cl,NO3

D = Li2SO4 ⋅ K2SO4

x1x6x7x8x9 = LiBO2–1/2K2SO4–KCl–KNO3–D
x1x2x7x8x9 = LiBO2–1/2Li2SO4–KCl–KNO3–D
x1x2x4x7x8 = LiBO2–1/2Li2SO4–LiNO3–KCl–KNO3

x1x2x3x4x7 = LiBO2–1/2Li2SO4–LiCl–LiNO3–KCl
x1x5x6x7x8 = LiBO2–KBO2–1/2K2SO4–KCl–KNO3

Li,Na,K||Cl,BO2,WO4

D1 = Na2WO4 ⋅ (NaCl)2

D2 = Li2WO4 ⋅ K2WO4

x2x7x8x9x11 = (LiBO2)2–Na2WO4–D2–(KCl)2–K2WO4

x2x5x9x10x11 = (LiBO2)2–(NaBO2)2–(KCl)2–(KBO2)2–K2WO4

x2x5x7x9x11 = (LiBO2)2–(NaBO2)2–Na2WO4–(KCl)2–K2WO4

x2x5x6x7x9 = (LiBO2)2–(NaBO2)2–D1–Na2WO4–(KCl)2

x2x4x5x6x9 = (LiBO2)2–(NaCl)2–(NaBO2)2–D1–(KCl)2

x2x3x7x8x9 = (LiBO2)2–Li2WO4–Na2WO4–D2–(KCl)2

x2x3x6x7x9 = (LiBO2)2–Li2WO4–D1–Na2WO4–(KCl)2

x2x3x4x6x9 = (LiBO2)2–Li2WO4–(NaCl)2–D1–(KCl)2

x1x2x3x4x9 = (LiCl)2–(LiBO2)2–Li2WO4–(NaCl)2–(KCl)2
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known analytical relations (see, e.g., [17]) between the
triangulation parameters:

R = M + 3S, T = 1 + M + 2S,
where R is the number of quasi� and partially quasi�
binary cuts, T is the number of secondary systems, and
M and S are the numbers of binary and ternary com�
pounds. At S = 0, these relations are simplified to R =
M and T = 1 + M. 

The application of the Euler equation to planar n�
vertex polygons with m internal points (n + m) – (n +
d) + f = 1 led to expressions that relate the numbers of
polygon vertices (n) and internal points (m) with the
numbers of diagonals (d) and simplices (triangles) ( f )
as follows [18]:

d = 3m + n – 3, f = 2m + n – 2.
Having selected the number of points on the poly�

gon sides (k), one arrives at the expressions
d = n + k + 3m – 3, f = n + k + 2m – 2. (5)

The total number t of all points (graph vertices), the
number d of internal diagonals, and the number f of
simplices (triangles) obtained as a result of triangula�
tion are related by the Euler equation
(n + k + m) – (r + d) + f = 1 or t – p + f = 1, (6)

where r is the number of segments on the sides of the
triangle into which they are divided by k points. 

At n = 3, for the concentration triangle (r = 3 + k),
expressions (5) and (6) take the form 

(7)

At n = 4, the topological relations (5) and (6) for
simplexing concentration complexes of ternary recip�
rocal systems can be written as

(8)

Thus, expression (6) relates the number t of rows
(columns) of the adjacency matrix and number p of its
unit elements with the numbers of one�dimensional
(d) and two�dimensional ( f ) simplices. 

Note that the number of sides and diagonals of the
complex p = r + d is equal to the number of unit ele�
ments in the adjacency matrix. Since t ⋅ t is the number
of all elements of square adjacency matrix and (t ⋅ t –
t)/2 is the number of all elements of its upper half, the
number p can be calculated from the formula

p = , (9)

in which t0 is the number of adjacency list elements (or
the number of zero elements of the adjacency matrix). 

Tetrahedration testing. For quaternary systems
divided into tetrahedra, the initial information is set by
the sum t = n + k + m + b, where n is the number of
vertices of the initial concentration complex, k is the
number of points on the edges, m is the number of
points on the faces, and b is the number of quaternary
internal points, and by the number p = r + d + q, where
r is the number of edges (or their fragments), d is the

(3 + k + m) – (r + d) + f = 1,

d = k + 3m, f = 1 + k + 2m.

(4 + k + m) – (r + d) + f = 1,

d = 1 + k + 3m, f = 2 + k + 2m.

⋅ −

− 0
2

t t t t

number of diagonals on the faces, and q is the number
of internal diagonals. 

If we introduce the designation h = f + g, where f is
the number of external faces (or their fragments) and g
is the number of internal secant planes (simplices) and
denote the number of three�dimensional simplices
(tetrahedra) as s, the numbers of vertices (t), edges (p),
faces (h), and simplices (s) will be related by a formula
similar to (6): 

(10)

Each tetrahedron has four faces, each of which is
taken into account twice if it is an internal diagonal
plane and once if it coincides with an external face of
the polyhedron. Therefore, 

4s = f + 2g. (11)
The joint solution of (10) and (11) with respect to g

and s yields formulas that make it possible to deter�
mine the number of internal triangles dividing the
polyhedron into three�dimensional simplices (tetra�
hedra):

g = 2 – 2t + 2p – 3f/2, s = 1 – t + p – f/2. (12)
Since t is the total number of vertices of the initial

concentration complex (i.e., binary, ternary, and qua�
ternary compounds) and p is the number of links
between them, which is given by formula (9), the only
thing to do is to estimate f (the number of simplices on
external faces).

The ABCD tetrahedron (n = 4) has six edges and
four triangular faces. When polyhedration is per�
formed, the initial information in the adjacency
matrix is set by the number t of points and number p of
segments that connect them as follows: t = 6 + k +
m + b and p = r + d + q, where k is the number points
on edges, m is the number of points on faces, b is the
number of points in the polyhedron, r is the number of
edges (or their segments), d is the number of diagonals
on faces, and q is the number of internal diagonals.
Edges are divided by binary compounds into p frag�
ments as follows: r = 6 + k. 

The number q of internal diagonals is expressed in
terms of p, k, and m as

(13)

Since the tetrahedron faces are ternary systems, the
numbers of internal diagonals (d) and simplices ( f )
for them can be calculated using formulas (7): 

d = (kAB + kAC + kBC + 3mABC)
+ (kAB + kAD + kBD + 3mABD) + (kAC + kAD + kCD 

+ 3mACD) + (kBC + kBD + kCD + 3mBCD),
and

f = (1 + kAB + kAC + kBC + 2mABC) + (1 + kAB + kAD 

+ kBD + 2mABD) + (1 + kAC + kAD + kCD + 2mACD)
+ (1 + kBC + kBD + kCD + 2mBCD) 

t – p + h – s = 1

or (n + k + m + b) – (r + d + q) + ( f + g) – s = 1.

q = p – r – d = p – (6 + k) – (2k + 3m)

= p – 6 – 3k – 3m.
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or
d = 2k + 3m, f = 4 + 2k + 2m. (14)

In this case, expressions (12) are transformed to
g = 2 – 2t + 2p – 3f/2 = 2 – 2(4 + k + m + b)

+ 2(r + d + q) – 3(4 + 2k + 2m)/2 (15)
= k + m + 2q – 2b,

s = 1 – t + p – f/2 = 1 – (4 + k + m + b)
+ (r + d + q) – (4 + 2k + 2m)/2 (16)

= 1 + k + m + q – b.
Thus, to determine in advance the number s of sim�

plices (tetrahedra) and the number g of internal cut
planes from formulas (15) and (16), it is sufficient to
have initial information about the numbers of binary,
ternary, and quaternary compounds (k, m, and b,
respectively) and the number q of internal cut diago�
nals. 

Since the A, B || X, Y, Z polyhedron has six vertices
(n = 6), nine edges, two triangular faces, and three tet�
ragonal faces, the edges are divided by k points into r
segments: r = 9 + k, and the total number of points is
t = 6 + k + m + b. Based on (7) and (8), one can cal�
culate the numbers of diagonals (d) and two�dimen�
sional simplices ( f ) on all triangular and square faces
of the polyhedron:

d = (k12 + k13 + k23 + 3m123)
+ (k45 + k46 + k56 + 3m456)

+ (1 + k12 + k14 + k25 + k45 + 3m1254)
+ (1 + k13 + k14 + k36 + k46 + 3m1364)
+ (1 + k23 + k25 + k36 + k56 + 3m2365),

f = (1 + k12 + k13 + k23 + 2m123)
+ (1 + k45 + k46 + k56 + 2m456)

+ (2 + k12 + k14 + k25 + k45 + 2m1254)
+ (2 + k13 + k14 + k36 + k46 + 2m1364)
+ (2 + k23 + k25 + k36 + k56 + 2m2365);

hence,
d = 3 + 2k + 3m, f = 8 + 2k + 2m.

The number q of internal diagonals is expressed in
terms of p, k, and m as follows:

q = p – r – d = p – (9 + k) – (3 + 2k + 3m)
= p – 12 – 3k –3m.

The numbers of internal planes (g) and tetrahedra
(s) are expressed in terms of the initial numbers of
points on the edges (k), on the faces (m), and inside
the polyhedron (b) and the number q of internal diag�
onals as follows:

g = 2 – 2t + 2p – 3f/2 = 2 + k + m + 2q – 2b,
s = 1 – t + p – f/2 = 3 + k + m + q – b.

CONCLUSIONS

To make the polyhedration of the concentration
space of multicomponent systems an automatic pro�
cedure, we developed a program that uses the presen�
tation of divided multidimensional space in the form
of a graph. This program is based on Kraeva’s algo�

rithm, in which the connections between the vertices
of simplices and the initial complex are described in
terms of the adjacency matrix. To use this program,
one must enumerate all vertices of the complex,
including those of the initial concentration polyhe�
dron, as well as the binary, ternary, and more complex
compounds, and introduce indices of zero elements of
the adjacency matrix that correspond to unconnected
vertices.

The program developed forms the adjacency
matrix and adjacency list, compiles and calculates the
product of adjacency list elements with allowance for
the absorption rule, performs inversion, and yields a
list of simplices with their enumerated vertices. 

A limitation of Kraeva’s method was revealed for
the polyhedration of concentration complexes with
internal vertices. To remove this limit, one can exclude
these internal points in the first triangulation stage and
perform primary triangulation without them. The next
task is to determine which of the obtained simplices
the remaining internal points belong to and perform
an additional partition of the microcomplexes formed.

Geometrically, an n�dimensional complex (a phys�
icochemical system), the vertices of which are the ini�
tial�graph vertices, is divided into fragments (sub�
systems). The algorithm forms families of subsets,
each term of which can combine different numbers of
vertices. Most often an n�dimensional complex is
divided into n�dimensional simplices. However, in
some cases, polyhedration may yield either simplices
with smaller dimensions or complexes that require
additional polyhedration. 

The occurrence of (n – 1)�dimensional simplices
or (n + 1)�dimensional complexes can be caused by an
error in the initial data in the adjacency matrix or by
deliberate removal or doubling of some connections
when it is desirable to emphasize the presence of solid
solutions. 

If polyhedration yields a microcomplex, it is neces�
sary to check whether one of its vertices belongs to
some simplex from the four remaining vertices. If yes,
the central point must be connected with the remain�
ing vertices to obtain three�dimensional simplices. If
no, either the microcomplex corresponds to a sub�
system with a continuous series of solid solutions (the
additional polyhedration is not required in this case)
or an extra diagonal was erroneously introduced. 

When it was necessary to perform additional poly�
hedration (in the cases where the maximum indepen�
dent subset of graph was a complex), the main algo�
rithm was supplemented with additional procedures,
which exclude some graph vertices (and the connec�
tions of other vertices with them) in the first stage of
polyhedration and then take into account these verti�
ces in the second stage.

To verify the initial data and the results of polyhe�
dration, we derived formulas linking the number of
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vertices and edges of graph with the number of sim�
plices and their boundaries. 
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