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Matrix interrelation of subsystems coordinates in M—Ba—Na—B—O (M = ScY) system with the
compound MBANa(BO3), are derived. Imitation of quaternary eutectic points search by a set of one-
dimensional tetrahedron sections (nonplanar tie-lines method) is performed in system (KCl),—R{—R»-
(LiBO2); (R1 = LiIKWOg4, Ry = LiKSO4), which separates the pentatops (KCl);-K2SO4—R1—-Ry—(LiBO3),
and (KCl),-(LiBO2),—R1—R—Li;WO4 of system Li,K||C1,S04,WO04,BO,. Triangulation of systems A,B,C||X,Y

with binary compounds by new algorithms has been considered.
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1. Introduction

Till now a so-called tie-line method (for the multicomponent
eutectic composition determination) was used only as a planar one
[1-3], when tetrahedron’s sections belong to the planes, which are
parallel to tetrahedron faces. Elaboration of theoretical tasks,
associated with the transformation of concentration coordinates of
multicomponent systems and their subsystems [4], permits to use
the set of isopleths, which situate arbitrarily. Efficiency of this
approach will be demonstrated in subsystem KCl—R;—R,—LiBO,
with binary compounds R; = LiIKWOy4, R; = LiKSO4. Matrix trans-
formation of mass-centric coordinates is shown by the data for
systems M—Ba—Na—B—0 (M = Sc,Y) and Li,K]||C1,SO4,W04,BO;. One
more problem of reciprocal salt systems investigation is connected
with the polyhedration of multidimensional complexes [5—7]. In
this paper new ideas have been offered to triangulate the concen-
tration complexes of AB||X)Y,Z or AB,C||X)Y reciprocal systems.
Experimental data for the borate systems were taken from [8—10].
Investigation was carried out by means of computer models for
phase diagrams [11,12].
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2. Transformation of coordinates in systems M—Ba—Na—B—0
(M = Sc,Y) and Li,K||C1,5S04,W04,BO,

System M—Ba—Na—B—0O (M = ScY) involves the compounds
BaO(0; 1/2; 0; 0; 1/2), B,03 (0; 0; 0; 2/5; 3/5), Na,0 (0; 0; 2/3; 0; 1/
3), M03(2/5; 05 0; 0; 3/5), MBOs (1/5; 0; 0; 1/5; 3/5), NaBO3 (0; O;
1/4; 1/4; 2/4), BaNaBOs (0; 1/6; 1/6; 1/6; 3/6), MBaNa(BOs), (1/11;
1/11; 1/11; 2/11; 6/11). The subsystems MBO3;—BaO—B,03—Na0,
M,03—Ba0—B,03—Nay0 u MBO3—BaNaBO3;—NaBaO, (Fig. 1) [8,9]
are considered at the matching of solvents for crystals growth.
Let's calculate the coordinates of compound MBaNa(BOs); in
subsystems MBO3;—BaO—Na;0—B,03, M;03—Ba0O—Na;0-B,03 and
MBO3—BaNaBO3;—NaBO; using the matrix expression r = M-x,
where r is the column vector of compound MBaNa(BOs3); coordi-
nates in pentatop, is the matrix of points coordinates in simplex
tops, u is the column vector of unknowns. The coordinates of
tetrahedron MBO3—BaO—Na;0—B;03 can be calculated using the
matrix expression:

1/11 15 0 0 0 _

111 0 12 0 o0 |(¥) X=04
111 =0 0 2/3 0 XZ —>X2 014
2/11 1/5 0 0 2/5 X3 X3 — 0923
6/11 3/5 1/2 1/3 3/5 4 4=



V. Lutsyk, A. Zelenaya / Solid State Sciences 14 (2012) 1604—1608 1605

Fig. 1. Coordinates transformation in systems M—Ba—Na—B—0 (M = Sc,Y) (a) and Li,K||BO2,S04,W04,Cl (b).

In similar way the coordinates of compound MBaNa(BOs3),
in tetrahedron M03—BaO—Na0—B,03 and triangle MBOs—
BaNaBO3—NaBO, are found:

1/11 25 0 0 O
1/11 0 1/2 0 o0
/11| =] 0 0 2/3 0
2/11 0 0 0 2/
6/11 3/5 1/2 1/3 3/5
x\ x; =023 (11
1/11
X2 Xy = 0.18
X - .| 1/11
X3 X3 = 0.14
X, X4 = 0.45 2/11
4 4= 6/11
1/5 0 0 N
0 1/6 0 Xl X, = 045
= o 1/6 1/4 X2 —x; = 0.55.
1/5 1/6 1/4 3 x3 = 0.00

3/5 3/6 2/4) \*4

Since the material points NaBO;, NayO, B,0O3 also have unit
masses as well as the tops of initial pentatop M—Ba—Na—B—O0,
then the composition of compound NaBO, divides the segment of
binary system Nay0-B0Os; into ratio 5:3 and has the coordi-
nates(0.625; 0.375). The compound BaNaBOs situated on triangle
BaO—Nay0—B,03 has the coordinates (0.334; 0.250; 0.416) and
divides its area into ratio 4:3:5.

System  LiK||Cl,SO4,W04,B0, includes six pentatops
((KC1)2—K3S04—KaWO4—(LiBO3);—(KBO3 )z, (KCl)3—K2S04—Ko WO,
—(LiBO2)2—R1, (KCl),—K5S04—Rq—Ry—(LiBO,),, (KC1);—(LiBO2),—R;
—Ry—LipWOy4, (KCl);—Ry—Li;WO4—(LiBO;),—LiSO4, (KCl);—LizSO4—
Li,WO4—(LiBO;),—(LiCl)2) and five tetrahedrons ((KCl);—KSO4—
KoWO04—(LiBO3);,  (KCl);—K3SO4—R1—(LiBO3);,  (KCl);—R1—Ry—
(LiBO32)2, (KCl);—Ry—LizWO4-(LiBO3),, (KCl);—Li2S04—LiaWO4—
(LiBO3)z) [10]. Let’s consider the task of transformation of point
G(1/4; 1/4; 1/4; 1/4) coordinates given in tetrahedron
(KCl);—R1—Ry—(LiBO3); with unit masses in tops relatively the
coordinates of initial system. For this purpose, we write the
tetrahedron tops in coordinates Li—K—Cl-S—W—B—0: (KCl), (0;
1/2; 1/2; 0; 0; 0; 0), (LiBO2)2 (1/4; 0; 0; 0; 0; 1/4; 2/4),
R1(1/7; 1/7; 0; 0; 1/7; 0; 4/7), Ry(1/7; 1/7; 0; 1/7; 0; 0; 4/7). The
coordinates of point G in initial system Li—K—Cl-S—W—B—O0 are
calculated as:

Z 0 1/7 17 1/4 z; = 0.134

o I R S S NP AN

Z3 zz3 = U.
1/4

zZl=]l0 o0 17 o 74 = 0.036.
1/4 =

Zs 0 17 0 0 \/4) 25 =0036

Zg 0 0 0 1/4 zg = 0.062

P 0 4/7 4/7 2/4 z; — 0.410

A computer model can be construct both for all system and
for individual subsystems, in this case unit masses are placed
in the simplex’ tops. Let's consider a model of subsystem
(KCl)2—R1—R—(LiBO3)s.

3. Model of subsystem (KCl),—R;—R2—(LiBO3)2

Subsystem (KCl);—R1—R,—(LiBO3); includes 4 liquidus hyper-
surfaces Qj, a immiscibility hypersurface i, 27 ruled hypersurfaces
(12Q"y+12Qyk+3i", where Q'jy and Q' are the hypersurfaces with
one- and two-dimensional simplexes, i, are hypersurfaces with
one-dimensional simplex bounding the phase regions with
immiscibility melt) and a horizontal hyperplane at the temperature
of quaternary eutectic T, (Fig. 2, Table 1) [10].

A kinematical method of hypersurfaces describing is used for
the computer model simulation [11,12]. In this case, the coordinates
of initial components (I = Ry, Ry, (KCl);, (LiBO>)), 6 binary eutectics
(ey), 4 ternary eutectics (E1—4) and quaternary one (¢) are given as
initial data. Take into account the curvatures of binary and mono-
variant liqudus lines, as well as on the hypersurface. Because the
solid-phase solubility is missing, then one or two directing
elements (surface or two lines) of ruled surfaces are combined with
the hyper-prizm edges and then projected into the tetrahedron
tops. The shifting of forming line along to the directing surfaces
gives the hypersurfaces. The obtained diagram model can be used
for the imitation of tie-lines method to find the invariant point by
the construction of vertical sections sets.

4. Imitation of tie-lines method

The “traditional” tie-lines method initially assumes the giving of
three-dimensional vertical section in the plane of which sets two
two-dimensional sections [2,5]. The employment of matrix rations
between the coordinate systems of considered one-dimensional
tie-lines do not need to construct three-dimensional vertical
section, and first two two-dimensional sections may not belong to
the same plane.
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Fig. 2. Liquidus and immiscibility hypersurface of subsystem (KCl),—R;—R,—(LiBO,), (a), ruled hypersurfaces Q" g, (b—c) and Q'r_go_x (d—e) in XYZ and TXY projections.

Table 1

Contour of hypersurfaces ((KCl),=K, (LiBO;),=L).
Symbol Contour Symbol Contour Symbol Contour
Qr1 Riegi—r2ek—r1€L-r1E1E2E4e Qri-k Ezex—r1E1eKKg1Ke2Kekr Qr_K—L—Rl EyeKeL Lg1Kg
Qr2 R2€R1-R2€K—R2€L-R2E2E3E4E Qr2k Esex—raE2eK KpaKpzKekra Qr1-R2—K E2eR1,R2.R2p>R1 k>
Q(KCI), Kek—r1€x—raex—1E1E2E3e QL Esex—1E1eKKe1 KesKek—1 Q'ri-k-R2 E»eR1.KKpaR1E>
Q(LiBO), Ley ri€L—r2€k—LE1EsE4emnkik; r_Rl—L EqerriE1eLeleiLealer—r1 Q'ro—k—R1 E2eR2 K KpaR2p,
i mnk;kok° Q'ro-L Eqer-—roEselilgslealer g2 Qr2k-L E3eR2 K Kp3R2g3

"R1-R2 E4er1-raE26R1:R12R1E4R 1er1R2 QLx Esex—1E1eLelpiLeslek—1 "R2-L-K E3eR2.L:Lg3R2p3
Qx-r1 Ezek—r1E16R1:R1g1R1 2R ex—r1 Qri-R2-L E4eR1:R2:R2E4R1E4 Qk-L-r2 E3eKcLLg3Kes
Qr_L—Rl E4e1-r1E16R1:R1E1RTEaR TeL—R1 Qri-L—R2 E4eR1L.LgaR1Eq i'mn mnk;k;
Q'r2-r1 E4€R1-roE26R26R2E2R2E4R2eR1R2 Qr2-L-r1 E4eR2,LLEaR2E4 i'm mKqKaLmn(n)Lk1Lie
Qx—r2 Esex-raE2eR2R2p2R2p3R2ek—r2 QRr1—k-L E1eR1KKe1R1Ey iy nK1KaLin(n)Lici L
Qg2 E4qe1—roE3eR2.R2p3R2E4R2e1 12 Qri-1x E1eR1LLEIR1 H. R1.R2.K.L.e
In the first stage, two-dimensional section is given by two points o) s1y s2; r

on the tetrahedron sides within the projection one of liquidus r s1, 52, X1 r

hypersurface. For example, section s1(0.52; 0.45; 0; 0.03)—s»(0.44; r3 | = | s13 s25 X; - rs

0.48; 0.08; 0) (Fig. 3a) intersects the liquidus hypersurface Qg Ta sly S24 ra

(line 1-2), ruled hypersurfaces Q'ror1 (3—4), Q'r1roL (5—6), Qr1R2K 052 0.44 r; — 0.483

(6—7), hyperplane at T, (8—6—9) (Fig. 3b). The section point 6=r 0'45 0.48 0.54 r 0.4647

belongs to common forming simplex R; Ry ¢ of ruled hypersurfaces = .O 0.08 (0.46) — é B 0'037’
r r : : : : =Y. )

Q'riroL 1 Q'R1p2k at T.. Taking the segment s1s2 length equal to unit, 03 0 rs — 0.016.

we obtain that the section base is divided into the parts with the
lengths 0.54 and 0.46 (Fig. 3b) at the projecting of point r on the
section base. So the coordinates of point r can be calculated using
matrix transformation [4]:

In the second stage, the section passing through the obtained
point r and arbitrary point s3(0.6; 0.4; 0; 0) of tetrahedron edge
RiRy is constructed to intersection with with tetrahedron side

d 3

L

\-
=
+
~
&3
[=aR 1)

L+(LiBO2):
1 L+Ri+

L+R2

+Ri+
LR (KCl)z+

+(KCI Ri+R:
ey R (LiBO2):
9 / 4 8
! L+Ri+!
Ri+Ra+ ! Ri+Rz+ (KClz+ ! Ri+Rz+
(LiBOz)|z+(KCI)z :(LiB(h)z+(KCl)z (LiBO2)2 ! (LiBO2)2+(KCl):
1
| I 1
si 1 82 §3 T Te 54 s € R2

Fig. 3. Scheme of arrangement (a) of sections s, (b), s354 (), Rass (d).
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Fig. 4. Microcomplex 12345 of ternary reciprocal system (a) and the variants of hexahedron triangulation: alternative of plane 324 and diagonal 15 (b), alternative of diagonals 47

and 15 (c).

Ry—(KCl),—(LiBO,); in point s4 (Fig. 3a). Simultaneously solution of
equation of plane Ry—(KCl),—(LiBO3); and segment s3r gives the
coordinates of point s4(0; 0.73; 0.19; 0.08). The section s3s4 inter-
sects the liquidus Qg3 (line 1—-2), ruled hypersurfaces Q"gag1 (3—4),
Q'roL (4-5), Qrox (4—6) (Fig. 3¢) and one-dimensional forming
segment R.¢ of ruled hypersurface at the temperature of quater-
nary eutectic in point 4=r.. Then we define that the point r. divides
the segment base into the parts with lengths 0.66 and 0.34, and
calculate its coordinates:

Te1 s31 s4 Te1
To | _ [ 32 84 [ (x1)_ | T2
ra | | s33 s43 (Xz) re3
Tea $34 S44 Tea

06 0 r, — 0.396,

|04 073 (0.66) o = 0512,

=1 o0 019|\034)r; = 0064,

0 008 r.a — 0.028.

Next section is construct along to ray Ror. till the intersection the
side R1—(KCl),—(LiBO3); in point ss5 (Fig. 3a). The equations of plane
R1—(KCl),—(LiBO2), and segments Ror. are simultaneously solved
for the calculation of point s5 coordinates. Section Rs5 intersects Qp
(1—2), Qk (2—3), QrLRl (2—4), Qrm]_]( (2—5) and H. (Fig. 3d). Section
point 2 is the desired point ¢, dividing the section base into the pats
with length 0.7 and 0.3. Its coordinates are calculated as:

& Al 55] &
& _ Az s5, X1 N &
£3 - A3 $53 X2 £3
€4 A4 554 &4
0 0.81 ¢ = 0.567,
(1 0 (0.3)_} & = 0.3,
10 013 0.7 e3 = 0.091,
0 0.06 g4 = 0.042.

5. Variants of hexahedron triangulation

The separation of tetrahedron 3456 in system A,B||X)Y,Z visu-
alized as the prizm 123456 with given triangulation of bounding
ternary reciprocal systems by the diagonals 24, 34, 35 produces the
microcomplex 12345 (Fig. 4a). Because the diagonal 24 dividing the
square 2145 into triangles 214 and 245 is known, then the micro-
complex 12345 can be considered as the degenerated hexahedron
consisting of tetrahedral 1234 and 2345 with common side 234.
It’s appropriate to consider and the second variant of triangulation
of non-degenerated hexahedron 12345 into three tetrahedrons

(1523 + 1534+1524) with three adjacent sides (153, 154, 152) and
with common internal edge 15 (Fig. 4b). In these two variants, there
are a competition of common side 234 of two tetrahedrons and
common edge 15 of tree tetrahedrons. Since second variant of
triangulation is not implemented in real physical-chemical
systems, we can suggest that the optimal triangulation is deter-
mined by the minimal quantity of tetrahedrons. The advent of
additional top (chemical compound) 7 on the edge 23 produces
that each of two variants of triangulation gives to 4 tetrahedrons:
1347 +1247+5347 + 5247 or 1527 + 1537+1534 + 1524 (Fig. 4c). In
addition, both variant of triangulation with the competing internal
diagonals 15 or 47 became equiprobable ones. Real variant should
be examined by the experimental check of point of diagonals
intersection: 15N47.

The triangulation of microcomplex 12345 (Fig. 4a) by Kraeva’s
method [5] gives only one variant of dividing into two tetrahedrons
(1234 u 2345) and does not reveal the internal diagonal, because
the matrix of adjustments contents only unit elements. Whereas
the employment of algorithm for the hexahedron with additional
point 7 on the edge 23 (Fig. 4c) identifies two variants of triangu-
lation. In first case, the diagonal 15 is unit element, and diagonals
23 and 47 are zero ones. And the multiplication of adjustments list
gives: (X2 + X3)(X4 + X7) = XoX4 + XoX7 + X3X4 + Xx3x7. After the
inversion we obtain four tetrahedrons 1357, 1345, 1257 and 1245. In
second case, the matrix and list of adjustments content unit diag-
onal 47 and zero diagonals 15 and 23. The multiplication of
adjustments list (X1 + x5)(X2 + X3) = X1X2 + X1X3 + X2X5 + Xx3X7 and
the inversion produce four tetrahedrons 3457, 2457, 1347, 1245.

6. Summary

Computer models make possible the convenient visualization of
phase diagrams geometrical structure, as well as realize the
different variants of their sections. The understanding of phase
diagram regularities allows us to predict the view of two-
dimensional sections based on their arrangement relative to the
liquidus elements, and exclude the possible errors in their graphics.
Nonplanar tie-lines method has been developed by means of
computer model with the matrix transformation of coordinates for
the determination of invariant compositions. The alternative vari-
ants of triangulations, realized at the forming of binary compound,
are considered as very useful in reciprocal salt systems.
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