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a b s t r a c t

Matrix interrelation of subsystems coordinates in MeBaeNaeBeO (M ¼ Sc,Y) system with the
compound MBANa(BO3)2 are derived. Imitation of quaternary eutectic points search by a set of one-
dimensional tetrahedron sections (nonplanar tie-lines method) is performed in system (KCl)2eR1eR2-
(LiBO2)2 (R1 ¼ LiKWO4, R2 ¼ LiKSO4), which separates the pentatops (KCl)2-K2SO4eR1e-R2e(LiBO2)2
and (KCl)2-(LiBO2)2eR1eR2eLi2WO4 of system Li,KjjCl,SO4,WO4,BO2. Triangulation of systems A,B,CjjX,Y
with binary compounds by new algorithms has been considered.

� 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

Till now a so-called tie-line method (for the multicomponent
eutectic composition determination) was used only as a planar one
[1e3], when tetrahedron’s sections belong to the planes, which are
parallel to tetrahedron faces. Elaboration of theoretical tasks,
associated with the transformation of concentration coordinates of
multicomponent systems and their subsystems [4], permits to use
the set of isopleths, which situate arbitrarily. Efficiency of this
approach will be demonstrated in subsystem KCleR1eR2eLiBO2
with binary compounds R1 ¼ LiKWO4, R2 ¼ LiKSO4. Matrix trans-
formation of mass-centric coordinates is shown by the data for
systems MeBaeNaeBeO (M ¼ Sc,Y) and Li,KjjCl,SO4,WO4,BO2. One
more problem of reciprocal salt systems investigation is connected
with the polyhedration of multidimensional complexes [5e7]. In
this paper new ideas have been offered to triangulate the concen-
tration complexes of A,BjjX,Y,Z or A,B,CjjX,Y reciprocal systems.
Experimental data for the borate systems were taken from [8e10].
Investigation was carried out by means of computer models for
phase diagrams [11,12].

2. Transformation of coordinates in systems MeBaeNaeBeO
(M [ Sc,Y) and Li,KjjCl,SO4,WO4,BO2

System MeBaeNaeBeO (M ¼ Sc,Y) involves the compounds
BaO(0; 1/2; 0; 0; 1/2), B2O3 (0; 0; 0; 2/5; 3/5), Na2O (0; 0; 2/3; 0; 1/
3), M2O3(2/5; 0; 0; 0; 3/5), MBO3 (1/5; 0; 0; 1/5; 3/5), NaBO2 (0; 0;
1/4; 1/4; 2/4), BaNaBO3 (0; 1/6; 1/6; 1/6; 3/6), MBaNa(BO3)2 (1/11;
1/11; 1/11; 2/11; 6/11). The subsystems MBO3eBaOeB2O3eNa2O,
M2O3eBaOeB2O3eNa2O j MBO3eBaNaBO3eNaBaO2 (Fig. 1) [8,9]
are considered at the matching of solvents for crystals growth.
Let’s calculate the coordinates of compound MBaNa(BO3)2 in
subsystems MBO3eBaOeNa2OeB2O3, M2O3eBaOeNa2O-B2O3 and
MBO3eBaNaBO3eNaBO2 using the matrix expression r ¼ M,x,
where r is the column vector of compound MBaNa(BO3)2 coordi-
nates in pentatop, is the matrix of points coordinates in simplex
tops, y is the column vector of unknowns. The coordinates of
tetrahedron MBO3eBaOeNa2OeB2O3 can be calculated using the
matrix expression:
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In similar way the coordinates of compound MBaNa(BO3)2
in tetrahedron M2O3eBaOeNa2OeB2O3 and triangle MBO3e

BaNaBO3eNaBO2 are found:
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Since the material points NaBO2, Na2O, B2O3 also have unit
masses as well as the tops of initial pentatop MeBaeNaeBeO,
then the composition of compound NaBO2 divides the segment of
binary system Na2O-B2O3 into ratio 5:3 and has the coordi-
nates(0.625; 0.375). The compound BaNaBO3 situated on triangle
BaOeNa2OeB2O3 has the coordinates (0.334; 0.250; 0.416) and
divides its area into ratio 4:3:5.

System Li,KjjCl,SO4,WO4,BO2 includes six pentatops
((KCl)2eK2SO4eK2WO4e(LiBO2)2e(KBO2)2, (KCl)2eK2SO4eK2WO4
e(LiBO2)2eR1, (KCl)2eK2SO4eR1eR2e(LiBO2)2, (KCl)2e(LiBO2)2eR1
eR2eLi2WO4, (KCl)2eR2eLi2WO4e(LiBO2)2eLiSO4, (KCl)2eLi2SO4e

Li2WO4e(LiBO2)2e(LiCl)2) and five tetrahedrons ((KCl)2eK2SO4e

K2WO4e(LiBO2)2, (KCl)2eK2SO4eR1e(LiBO2)2, (KCl)2eR1eR2e
(LiBO2)2, (KCl)2eR2eLi2WO4-(LiBO2)2, (KCl)2eLi2SO4eLi2WO4e

(LiBO2)2) [10]. Let’s consider the task of transformation of point
G(1/4; 1/4; 1/4; 1/4) coordinates given in tetrahedron
(KCl)2eR1eR2e(LiBO2)2 with unit masses in tops relatively the
coordinates of initial system. For this purpose, we write the
tetrahedron tops in coordinates LieKeCleSeWeBeO: (KCl)2 (0;
1/2; 1/2; 0; 0; 0; 0), (LiBO2)2 (1/4; 0; 0; 0; 0; 1/4; 2/4),
R1(1/7; 1/7; 0; 0; 1/7; 0; 4/7), R2(1/7; 1/7; 0; 1/7; 0; 0; 4/7). The
coordinates of point G in initial system LieKeCleSeWeBeO are
calculated as:
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A computer model can be construct both for all system and
for individual subsystems, in this case unit masses are placed
in the simplex’ tops. Let’s consider a model of subsystem
(KCl)2eR1eR2e(LiBO2)2.

3. Model of subsystem (KCl)2eR1eR2e(LiBO2)2

Subsystem (KCl)2eR1eR2e(LiBO2)2 includes 4 liquidus hyper-
surfaces QI, a immiscibility hypersurface i, 27 ruled hypersurfaces
(12Qr

IJþ12Qr
IJKþ3ir, where Qr

IJ and Qr
IJK are the hypersurfaces with

one- and two-dimensional simplexes, ir are hypersurfaces with
one-dimensional simplex bounding the phase regions with
immiscibility melt) and a horizontal hyperplane at the temperature
of quaternary eutectic T 3(Fig. 2, Table 1) [10].

A kinematical method of hypersurfaces describing is used for
the computer model simulation [11,12]. In this case, the coordinates
of initial components (I ¼ R1, R2, (KCl)2, (LiBO2)), 6 binary eutectics
(eIJ), 4 ternary eutectics (E1e4) and quaternary one ( 3) are given as
initial data. Take into account the curvatures of binary and mono-
variant liqudus lines, as well as on the hypersurface. Because the
solid-phase solubility is missing, then one or two directing
elements (surface or two lines) of ruled surfaces are combined with
the hyper-prizm edges and then projected into the tetrahedron
tops. The shifting of forming line along to the directing surfaces
gives the hypersurfaces. The obtained diagram model can be used
for the imitation of tie-lines method to find the invariant point by
the construction of vertical sections sets.

4. Imitation of tie-lines method

The “traditional” tie-lines method initially assumes the giving of
three-dimensional vertical section in the plane of which sets two
two-dimensional sections [2,5]. The employment of matrix rations
between the coordinate systems of considered one-dimensional
tie-lines do not need to construct three-dimensional vertical
section, and first two two-dimensional sections may not belong to
the same plane.

Fig. 1. Coordinates transformation in systems MeBaeNaeBeO (M ¼ Sc,Y) (a) and Li,KjjBO2,SO4,WO4,Cl (b).
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In the first stage, two-dimensional section is given by two points
on the tetrahedron sides within the projection one of liquidus
hypersurface. For example, section s1(0.52; 0.45; 0; 0.03)es2(0.44;
0.48; 0.08; 0) (Fig. 3a) intersects the liquidus hypersurface QR2
(line 1e2), ruled hypersurfaces Qr

R2R1 (3e4), Qr
R1R2L (5e6), Qr

R1R2K
(6e7), hyperplane at T 3 (8e6e9) (Fig. 3b). The section point 6^r
belongs to common forming simplex R1 3R2 3 3of ruled hypersurfaces
Qr

R1R2L j Qr
R1R2K at T 3. Taking the segment s1s2 length equal to unit,

we obtain that the section base is divided into the parts with the
lengths 0.54 and 0.46 (Fig. 3b) at the projecting of point r on the
section base. So the coordinates of point r can be calculated using
matrix transformation [4]:
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r1 ¼ 0:483;
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In the second stage, the section passing through the obtained
point r and arbitrary point s3(0.6; 0.4; 0; 0) of tetrahedron edge
R1R2 is constructed to intersection with with tetrahedron side

Fig. 2. Liquidus and immiscibility hypersurface of subsystem (KCl)2eR1eR2e(LiBO2)2 (a), ruled hypersurfaces Qr
L-R2 (bec) and Qr

R1eR2eK (dee) in XYZ and TXY projections.

Table 1
Contour of hypersurfaces ((KCl)2^K, (LiBO2)2^L).

Symbol Contour Symbol Contour Symbol Contour

QR1 R1eR1eR2eKeR1eLeR1E1E2E4 3 Qr
R1eK E2eKeR1E1 3K 3KE1KE2KeKR1 Qr

KeLeR1 E1 3K 3L 3LE1KE1

QR2 R2eR1eR2eKeR2eLeR2E2E3E4 3 Qr
R2eK E3eKeR2E2 3K 3KE2KE3KeKR2 Qr

R1eR2eK E2 3R1 3R2 3R2E2R1E2
QðKClÞ2 KeKeR1eKeR2eKeLE1E2E3 3 Qr

K-L E3eKeLE1 3K 3KE1KE3KeKeL Qr
R1-K-R2 E2 3R1 3K 3KE2R1E2

QðLiBOÞ2 LeL-R1eLeR2eKeLE1E3E4 3mnk1k2 Qr
R1eL E4eL-R1E1 3L 3LE1LE4LeLeR1 Qr

R2eKeR1 E2 3R2 3K 3KE2R2E2
i mnk1k2k0 Qr

R2-L E4eLeR2E3 3L 3LE3LE4LeL-R2 Qr
R2eKeL E3 3R2 3K 3KE3R2E3

Qr
R1eR2 E4eR1-R2E2 3R1 3R1E2R1E4R1eR1R2 Qr

L-K E3eKeLE1 3L 3LE1LE3LeKeL Qr
R2eLeK E3 3R2 3L 3LE3R2E3

Qr
KeR1 E2eKeR1E1 3R1 3R1E1R1E2R1eKeR1 Qr

R1eR2eL E4 3R1 3R2 3R2E4R1E4 Qr
KeLeR2 E3 3K 3L 3LE3KE3

Qr
LeR1 E4eLeR1E1 3R1 3R1E1R1E4R1eLeR1 Qr

R1eLe-R2 E4 3R1 3L 3LE4R1E4 irmn mnk1k2
Qr

R2eR1 E4eR1eR2E2 3R2 3R2E2R2E4R2eR1R2 Qr
R2eLeR1 E4 3R2 3L 3LE4R2E4 irm mk1k2Lm(n)Lk1Lk2

Qr
KeR2 E3eK-R2E2 3R2 3R2E2R2E3R2eKeR2 Qr

R1eKeL E1 3R1 3K 3KE1R1E1 irn nk1k2Lm(n)Lk1Lk2
Qr

LR2 E4eLeR2E3 3R2 3R2E3R2E4R2eLR2 Qr
R1eLeK E1 3R1 3L 3LE1R1E1 H 3 R1 3R2 3K 3L 3 3

Fig. 3. Scheme of arrangement (a) of sections s1s2 (b), s3s4 (c), R2s5 (d).
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R2e(KCl)2e(LiBO2)2 in point s4 (Fig. 3a). Simultaneously solution of
equation of plane R2e(KCl)2e(LiBO2)2 and segment s3r gives the
coordinates of point s4(0; 0.73; 0.19; 0.08). The section s3s4 inter-
sects the liquidus QR2 (line 1e2), ruled hypersurfaces Qr

R2R1 (3e4),
Qr

R2L (4e5), Qr
R2LK (4e6) (Fig. 3c) and one-dimensional forming

segment R2 3 3of ruled hypersurface at the temperature of quater-
nary eutectic in point 4^r 3. Thenwe define that the point r 3divides
the segment base into the parts with lengths 0.66 and 0.34, and
calculate its coordinates:
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r 31 ¼ 0:396;
r 32 ¼ 0:512;
r 33 ¼ 0:064;
r 34 ¼ 0:028:

Next section is construct along to ray R2r 3till the intersection the
side R1e(KCl)2e(LiBO2)2 in point s5 (Fig. 3a). The equations of plane
R1e(KCl)2e(LiBO2)2 and segments R2r 3 are simultaneously solved
for the calculation of point s5 coordinates. Section R2s5 intersects QL

(1e2), QK (2e3), Qr
LR1 (2e4), Qr

R1LK (2e5) and H 3(Fig. 3d). Section
point 2 is the desired point 3, dividing the section base into the pats
with length 0.7 and 0.3. Its coordinates are calculated as:
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31 ¼ 0:567;
32 ¼ 0:3;

33 ¼ 0:091;
34 ¼ 0:042:

5. Variants of hexahedron triangulation

The separation of tetrahedron 3456 in system A,BjjX,Y,Z visu-
alized as the prizm 123456 with given triangulation of bounding
ternary reciprocal systems by the diagonals 24, 34, 35 produces the
microcomplex 12345 (Fig. 4a). Because the diagonal 24 dividing the
square 2145 into triangles 214 and 245 is known, then the micro-
complex 12345 can be considered as the degenerated hexahedron
consisting of tetrahedral 1234 and 2345 with common side 234.
It’s appropriate to consider and the second variant of triangulation
of non-degenerated hexahedron 12345 into three tetrahedrons

(1523 þ 1534þ1524) with three adjacent sides (153, 154, 152) and
with common internal edge 15 (Fig. 4b). In these two variants, there
are a competition of common side 234 of two tetrahedrons and
common edge 15 of tree tetrahedrons. Since second variant of
triangulation is not implemented in real physical-chemical
systems, we can suggest that the optimal triangulation is deter-
mined by the minimal quantity of tetrahedrons. The advent of
additional top (chemical compound) 7 on the edge 23 produces
that each of two variants of triangulation gives to 4 tetrahedrons:
1347þ 1247þ5347þ 5247 or 1527þ 1537þ1534þ1524 (Fig. 4c). In
addition, both variant of triangulation with the competing internal
diagonals 15 or 47 became equiprobable ones. Real variant should
be examined by the experimental check of point of diagonals
intersection: 15X47.

The triangulation of microcomplex 12345 (Fig. 4a) by Kraeva’s
method [5] gives only one variant of dividing into two tetrahedrons
(1234 j 2345) and does not reveal the internal diagonal, because
the matrix of adjustments contents only unit elements. Whereas
the employment of algorithm for the hexahedron with additional
point 7 on the edge 23 (Fig. 4c) identifies two variants of triangu-
lation. In first case, the diagonal 15 is unit element, and diagonals
23 and 47 are zero ones. And the multiplication of adjustments list
gives: (x2 þ x3)(x4 þ x7) ¼ x2x4 þ x2x7 þ x3x4 þ x3x7. After the
inversionwe obtain four tetrahedrons 1357,1345, 1257 and 1245. In
second case, the matrix and list of adjustments content unit diag-
onal 47 and zero diagonals 15 and 23. The multiplication of
adjustments list (x1 þ x5)(x2 þ x3) ¼ x1x2 þ x1x3 þ x2x5 þ x3x7 and
the inversion produce four tetrahedrons 3457, 2457, 1347, 1245.

6. Summary

Computer models make possible the convenient visualization of
phase diagrams geometrical structure, as well as realize the
different variants of their sections. The understanding of phase
diagram regularities allows us to predict the view of two-
dimensional sections based on their arrangement relative to the
liquidus elements, and exclude the possible errors in their graphics.
Nonplanar tie-lines method has been developed by means of
computer model with the matrix transformation of coordinates for
the determination of invariant compositions. The alternative vari-
ants of triangulations, realized at the forming of binary compound,
are considered as very useful in reciprocal salt systems.
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