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INTRODUCTION

For radio devices radiating, transmitting, and
receiving wideband electromagnetic signals, media with
gradient electric parameters—conductance σ and per�
mittity ε—can be useful [1, 2]. Such media can be cre�
ated through spraying molecular beams on a substrate,
chemical growing, and packing thin plates in a file
where the conductance and permittivity of each plate
differ from those of the other plates [3]. For simulating
and analyzing the operation of such devices containing
a gradient layer as an element, it is important to have, as
a model, a problem that can be solved exactly. As a
model, we consider a layer with a gradient permittivity
that admits the exact calculation of the electromagnetic
field components in the layer and the reflection and
transmission coefficients of this layer. Usually, a general
approach allowing the determination of exact solutions
is the method of reduction (performed with the help of
replacement of variables and functions) [4] of the
Helmholtz equation to a certain reference differential
equation having known solutions [2]. Alternative
reduction methods [5, 6] substantially differing from
the methods described in [4] have recently been pro�
posed. These new methods are applied to solve the
Maxwell equations and allow obtaining solutions differ�
ing from those presented in [2].

In the study, we consider a general solution to the
problem for a gradient medium. The obtained results
are verified with the use of the limit passage from a gra�
dient to homogeneous medium. In addition, a semi�
infinite gradient medium is considered in the case
when a plane electromagnetic wave is normally inci�
dent on the medium in a homogeneous dielectric. For
this case, the reflection and transmission coefficients

are found. A solution is obtained for a finite�thickness
gradient dielectric layer.

The problem under study has recently become top�
ical. Thus, in [7], the idea of reconstructing the elec�
tric parameters of a reflecting layer from the envelope
of the frequency characteristic of the reflection coeffi�
cient is used. As in our study, in [8], an inhomoge�
neous layer is considered. However, the authors of [8]
tried to find a solution in the form of a series in the spa�
tial coordinate, whereas we consider the formulation
of the problem that admits an exact analytic solution
for both the electromagnetic field components and the
reflection and transmission coefficients.

1. A GENERAL SOLUTION

Assume that the electromagnetic wave depends on
time as  where ω is the circular frequency.
Below, time derivatives are not used, and, therefore,
the electromagnetic field components do not contain
the exponential factor . In an inhomoge�
neous dielectric medium, the wave equation for the
tangential component of electric field E has the form

(1)

where c is the velocity of light, two primes denote the
double differentiation with respect to z, and coordi�
nate z is measured along the direction from the inter�
face into the gradient medium. Following studies
[5, 6], we seek for a solution to Eq. (1) in the form
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This technique substantially differs from the reduction
method considered in [2]. The substitution of (2) into
(1) yields

(3)

Here, we have one equation for two functions  and
 However, if the bracketed expression is set zero,

we obtain two necessary equations from (3). One of
these

is elementarily integrated:

(4)

where  are integration constants. From the other

equation  = , we find

A suitable representation of the solution for the per�
mittivity is as follows:

(5)

The boundary value of the permittivity is ε = εL on the

upper boundary at z = 0 and  =  on
the lower boundary at z = h. Quantity a, which is mea�
sured in length units, can be referred to as the gradi�
entness parameter. Depending on the required condi�
tions imposed on the gradient layer, gradientness
parameter a can be negative as well. For expression (5)
to be convergent, it is necessary that quantity a is not
equal to thickness of h of the gradient layer. The tran�
sition layer becomes homogeneous with a constant
value of permittivity εL if we pass to the limit as a → ∞.

The substitution of (4) into expression (2) yields
the solution for the electric field

(6)

Here, the parameter

(7)

is introduced and signs “±” refer to the incident and
reflected waves, respectively. The additional phase that
enters the exponent and is independent of z is due to
the condition that, upon passing to the inhomoge�
neous medium, the electric field is determined by the
relationship
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which is a solution to the wave equation with constant
coefficients. Actually, in the limit a → ∞, the exponent
from solution (6) takes the form

 

and expression (6) becomes (8).

In addition, we present the expression for the elec�
tric field in the case of a unit�amplitude incident wave:

(9)

Here, factor A is the reflection amplitude and the wave
number in a homogeneous dielectric medium is calcu�
lated from the equation

(10)

where ε1 is the permittivity of the homogeneous
medium. The reflected wave (the term with amplitude
A in formula (9)) is due to the presence of the interface
between the homogeneous and gradient media. Let us
comment on the foregoing in more detail. The permit�
tivity of an inhomogeneous medium has a gradient.
One of the techniques of approximating such a
medium involves its modeling with thin homogeneous
layers with uniform values of the permittivity in each
layer. For this model, a linear coupling between the
electromagnetic field components is retained. When
the inhomogeneous structure of a medium is modeled
with thin homogeneous layers, the Maxwell equations
remain linear. In each layer, Maxwell equations have
solutions in the form of transmitted and reflected
waves. Therefore, the concept of a reflected wave can
be introduced for a gradient or an inhomogeneous
medium. Then, the model of a gradient medium is
more general than the model of a homogeneous�layer
medium. The gradient dependence of the permittivity
makes it possible to consider media with wideband fre�
quency properties.

The tangential magnetic induction component
orthogonal to the electric field can be found from the
expression

(11)

which follows from the Maxwell equations and is iden�
tical in all media with different spatial dependences of
the permittivity. The substitution of (9) into (11) yields
the magnetic induction of the incident wave:
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2. A SEMI�INFINITE GRADIENT 
DIELECTRIC MEDIUM

According to solution (6), wave E transmitted into
the gradient medium has the form

(13)

The choice of signs in the exponent is determined by
the condition that, in the limit a → ∞, we obtain the
transmitted plane wave E =  where R is
the transmission amplitude.

The substitution of function (13) into (11) yields
the expression for the magnetic induction

(14)

Only the nonzero components are presented for
the electric field and magnetic induction.

The boundary conditions mean that, at z = 0, com�
ponents E1 and E, as well as B1 and B, are equal,
whence we obtain two equations for A and R. Solving
these equations, we find

(15)

(16)

In the limit a → ∞, we can neglect i/a, whence the
known formulas expressing the reflection and trans�
mission coefficients for a homogeneous medium fol�
low [1]. Using the time dependence of the fields in the
form  we deal with complex quantities.
Physical quantities are the real parts of the corre�
sponding complex quantities.

Let calculate reflection and transmission coeffi�
cients rr and rt. To this end, we present the expression

 for vector  which we call the electromag�
netic wave flux. Accurate to a factor that is the same in

any media,  is the Poynting vector [1]. In the chosen
coordinate frame, we have the only nonzero compo�
nent S = cEB. This expression should be averaged
over time: S = 〈cEB〉. In addition, since we deal with
complex quantities, S should be replaced by the
expression [9]

(17)

The asterisk denotes complex conjugation. The substi�
tution of functions (9) and (12) into (17) yields the
incident wave flux
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Similarly, using (13) and (14), we find the transmitted
wave flux

(20)

Now, according to a standard procedure, we find
reflection coefficient rr

(21)

or

 

and transmission coefficient rt

(22)

or

 

It follows from (21) and (22) that rr + rt = 1, as it
should be.

3. A GRADIENT DIELECTRIC MEDIUM 
OF A FINITE THICKNESS

Let a plane gradient medium be a layer that has
thickness h and separates two homogeneous media
with permitivities ε1 and ε2 (Fig. 2). Assume that the
wave is normally incident from the medium with ε1
and partly transmitted through the gradient layer into
the medium with ε2. We assume for definiteness that
ε1 < ε2. For the opposite case ε1 > ε2, it suffices to reverse
the sign of gradientness parameter a in formula (5).
When artificial materials with given values of permit�
tivities are created, gradientness parameter a can
always be selected such that it does not approach the
value of layer thickness h. This condition ensures the
absence of the divergence of the expression 1/(a – h).

The electric field in a gradient medium has the
form

(23)

where U is the amplitude of the electric field propagat�
ing in the layer, W is the amplitude of the electric field
reflected by the lower boundary of the layer. In the
limit a → ∞, we obtain the expression for the field in a
homogeneous layer medium [1]. Reflection and trans�
mission amplitudes A and R, respectively, retain their
physical meanings but are determined by expressions
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different from (15) and (16). From (11), we find the
magnetic induction in the layer:

(24)

For electric field E2 transmitted through the layer
into the second dielectric medium, we obtain

(25)

where  The magnetic induction in the second

homogeneous medium is calculated from formula (11):

(26)

The boundary conditions on the upper and lower
boundaries of the gradient layer yield a system of four
equations for amplitudes A, U, W, and R:
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Then, a solution to the system of equations for the
amplitudes is as follows:

(31)

(32)

(33)

The above representation of the solution for the
amplitudes seems to be the most suitable for numerical
computation. It is hardly convenient to write cumber�
some expressions for the amplitudes in an explicit
form. Thus, for example,

The substitution of expressions (9) and (12) into
(17) yields formula (21) for the reflection coefficient:

where amplitude A is specified by expression (31).
Similarly, the substitution of expressions (25) and (26)
into (17) yields the following formula for the transmis�
sion coefficient:

(34)

where amplitude R is specified by expression (33). One
can show that, in the limit a → ∞, we obtain the result
from [10] for the reflection and transmission coeffi�
cients in the case ε1 = 1 and ε2 = 1. Thus, for example,
we obtain in this case for amplitudes A and R

In addition, one can check that, after some algebra,
the equality

rr + rt = 1 (35)

is obtained.
Figures 2 and 3 show the frequency characteristics

of the absolute values of the reflection and transmis�
sion coefficients and the corresponding phases.
These dependences are calculated with the use of for�
mulas (27)–(34) for the following parameters:

 

for the reflection (curve 2) and transmission (5) coef�
ficients at a = 0.023 m (Fig. 2);

 

for the reflection (curve 1) and transmission (6) coef�
ficients at a = 0.033 m (Fig. 2); and

for the dotted lines (curves 3 and 4 in Fig. 2). The anal�
ysis of Figs. 2 and 3 yields the following results.

Within a wide frequency band of 1–109 Hz (for the
aforementioned parameters), the reflection and trans�

mission coefficients (their absolute values and phases)
are constant. As the gradientness parameter grows, the
value of the transmission coefficient increases and,
accordingly, the value of the reflection coefficient
decreases. At the same time, the phases of the reflec�
tion and transmission coefficients are practically con�
stant. This behavior indicates that, within a wide fre�
quency band, the considered gradient layer can serve
as a low�pass filter and a phase inverter in radio devices
used for wideband signals. Note in addition that, with
the appropriate value of gradientness parameter a, lay�
ers dividing the electromagnetic field by a given num�
ber can be created. For example, one half wave is
transmitted through the layer and the other half wave
is reflected by the layer (the dotted line in Fig. 2).

Starting from the frequency f ≈ 109 Hz, the reflection
and transmission coefficients (their absolute values and
phases) begin to intensely oscillate. This effect is related
to the fact that, at this frequency, the wavelength is com�
parable with the thickness of the transition layer. Actually,
if c is the velocity of light, then, at the frequency f ≈ 109 Hz,
the wavelength is equal to the value

which coincides with h = 0.01 m.
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CONCLUSIONS

The coefficients of reflection and transmission of a
plane electromagnetic wave by a plane�parallel gradient
dielectric layer have been calculated. A model with a gra�
dient permittivity dependence that makes it possible to
obtain results in a finite analytic form has been consid�
ered. For a gradient layer, the gradientness parameter has
been introduced. Variation of this parameter makes it
possible to change the passband and the values of the
reflection and transmission coefficients. Such electrody�
namic structure of the transition layer with specially
selected electric parameters and thickness can serve as
the matching element of a low�pass filter and as a phase
inverter in radio devices applied for transmission of wide�
band and ultrawideband signals.
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